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SUMMARY
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity
regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins
govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of
42 CPA regulators with a 30 scRNA-seq readout that enables transcriptome-wide inference of polyA site us-
age. We develop a framework to detect perturbation-dependent changes in polyadenylation and charac-
terize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct com-
ponents of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train
and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regu-
latory code that predicts perturbation response and reveals interactions between regulatory complexes. Our
work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of
post-transcriptional regulation.
INTRODUCTION

RNA cleavage and polyadenylation (CPA) represent post-

transcriptional regulatory mechanisms that are required for

the maturation of eukaryotic pre-mRNA.1–4 The majority of

mammalian genes harbor multiple polyA sites, enabling a single

gene to encode multiple mRNA transcripts via alternative poly-

adenylation.5–7 The distinct 30 ends arising from this process

can influence multiple distinct stages of the RNA life cycle.

For example, shortening of the 30 untranslated region (UTR)

can affect transcript stability and localization,8,9 while alterna-

tive polyadenylation at intronic sites can lead to the generation

of truncated coding or noncoding transcripts.10–12 More

generally, widespread changes in polyadenylation have been

demonstrated in many biological contexts, including cellular

proliferation,13 tumorigenesis,14,15 embryonic development,16

and secretory cell differentiation.17 Biochemical and molecular

studies have revealed a subset of core and accessory proteins

that are responsible for regulating polyA site choice. For

instance, the CPA specificity factor (CPSF) complex catalyzes

cleavage, the cleavage factor Im (CFIm) and cleavage factor

IIm (CFIIm) complexes bind auxiliary recognition sequences,

and polyA polymerase is responsible for adding the polyA tail.4
4408 Cell 187, 4408–4425, August 8, 2024 ª 2024 Elsevier Inc.
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Genome-wide 30 transcriptome technologies can be used to

profile changes in polyA site usage,16,18–20 including genetic per-

turbations of CPA regulators. While some studies perform indi-

vidual or small sets of perturbations,21–24 others have used

small-interfering-RNA-based screening approaches to generate

larger resources.25,26 These studies have characterized the

global tendencies of individual regulators to promote either prox-

imal or distal polyA site usage within the 30 UTR, regulating a pro-

cess called tandem alternative polyadenylation (Figure 1A).

While different perturbations affect different numbers of sites, it

is unclear whether this variation reflects functional co-regulation:

i.e., whether groups of polyA sites are uniquely sensitive to

perturbation of different regulators or subcomplexes. If so, iden-

tifying these modules of co-regulated sites and the molecular

features driving their usage represents a key goal for enhancing

our understanding of CPA regulation.

Alternative polyadenylation can also occur at intronic polyA

sites (intronic alternative polyadenylation; Figure 1A), which, in

contrast to 30 UTR changes, results in alterations to the coding

sequence. The usage of intronic polyA sites has been linked to

multiple regulatory proteins that govern the synthesis or nuclear

processing of RNA transcripts.12,27–30 While changes in intronic

polyadenylation have been identified in disease states,10,11,31 it
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Figure 1. Overview of CPA-Perturb-seq

(A) (Top) Schematic of the experimental workflow used to generate the CPA-Perturb-seq dataset. (Bottom) Schematic of perturbation-dependent changes in

either tandem or intronic polyadenylation.

(B) Diagram depicting core regulatory complexes that make up and interact with the cleavage and polyadenylation machinery.

(C) Read coverage plots depicting the differential use of alternative polyA sites at the CBX3 locus. Each track represents a pseudobulk average of cells, grouped

by their perturbation. ENSEMBL gene models and peaks (quantification region) that precede detected polyA sites are shown below.

(D) UMAP visualization of HEK293FT cells profiled via CPA-Perturb-seq. Cells are colored based on the target gene identity, using the same colors as in (C).

Visualization was computed based on a linear discriminant analysis (LDA) of transcriptome-wide polyA site counts.

See also Figures S1–S3.
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is unclear if intronic polyA sites are globally sensitive to changes

in transcriptional dynamics or if, alternatively, subsets of regula-

tors determine the usage of distinct groups of intronic sites.

Multiplexed single-cell technologies like Perturb-seq, which

leverages single-cell RNA sequencing (scRNA-seq) for high-

throughput transcriptome-wide characterization of molecular

perturbations,32–36 offer exciting potential to address these

questions.While scRNA-seq is typically applied to profile hetero-

geneity in gene expression levels, these data can also be lever-

aged to characterize changes in transcript structure. The major-

ity of scRNA-seq protocols are designed to capture the 30 end of

polyadenylatedmRNA transcripts. Therefore, thesemethods are

well suited to quantify transcriptome-wide polyA site usage at

single-cell resolution alongside gene abundances, revealing dy-

namic changes in polyadenylation during cellular differentiation

and disease.37–40

Here, we introduce CPA-Perturb-seq, a resource where we

perturb known regulators of CPA in a multiplexed 30 scRNA-
seq screen and quantify each perturbation’s effect on polyA

site usage at single-cell resolution. We introduce new statistical

methods to quantify changes in polyA site usage in sparse sin-

gle-cell datasets, and we identify distinct modules of co-regu-

lated polyA sites. We find that co-regulation of intronic polyA

site use is driven by differential sensitivity to perturbation of

distinct elements of the nuclear RNA life cycle, while for tandem

sites, co-regulation is driven by a cis-regulatory code where

individual sequence elements modulate responsiveness.

We learn this code by extending pioneering deep learning

models of alternative polyadenylation41–46 to multiple genetic

contexts, and we validate our findings using a massively paral-

lel reporter assay (MPRA). Finally, we demonstrate how our

computational tools can be applied to any 30 scRNA-seq data-

set and characterize the regulatory effects of hundreds of

genes involved in RNA processing using a genome-scale Per-

turb-seq resource.47 Together, our analyses demonstrate

how single-cell sequencing can move beyond gene expression
Cell 187, 4408–4425, August 8, 2024 4409
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analyses and improve our understanding of post-transcrip-

tional gene regulation.

RESULTS

Multiplexed Perturb-seq screens of 30 polyA site usage
We sought to understand how systematic perturbations of genes

involved in CPA would affect alternative polyadenylation at

single-cell resolution (Figure 1A). We designed a library of 162

single-guide RNAs (sgRNAs) targeting 42 genes and 10 non-tar-

geting (NT) controls (Table S1). Our target set included 18 genes

that are known members of core CPA complexes, including the

CFIm, CFIIm, CPSF, and cleavage stimulation factor (CSTF)

complexes (Figure 1B). We also included 23 genes that have

been previously implicated in affecting relative polyA site usage

(Table S1).

We performed a pooled CRISPR interference (CRISPRi)

screen in HEK293FT cells and used the Perturb-seq experi-

mental workflow (STAR Methods) to simultaneously capture

the identity of the guide each cell received along with a 30

scRNA-seq readout (Figures 1A and S1). We focused our pri-

mary analyses on the deeply profiled HEK293FT dataset (median

of 2,168 cells per perturbation) but also repeated the experiment

in K562 cells (median of 960 cells per perturbation). Across two

biological replicates (independent viral transductions) in each

cell line, we obtained a total of 140,415 single cells (Table S2)

where we successfully assigned one sgRNA. We applied our

previously developed computational pipeline, Mixscape,48 to

address confounding sources of variation that have been

described in pooled single-cell CRISPR screens.33,34,48 For 6

of 42 regulators, Mixscape classified all cells as ‘‘non-per-

turbed,’’ suggesting minimal effects on the transcriptome

despite knockdown (KD) of the target gene (Figure S2A). For

the remaining 36 genes, Mixscape classified 69% of cells as

perturbed.

We utilized the scRNA-seq data to quantify both gene expres-

sion and transcriptome-wide polyA site usage profiles for each

cell (STAR Methods). We used polyApipe to first identify a set

of possible polyA sites and then quantify their usage in single

cells, generating a polyA site/cell count matrix for downstream

analysis.40 We restricted our analysis to polyA sites within 50 nu-

cleotides of polyA sites identified in polyA_DB v3.2,7 a database

of polyA sites generated from multiple human cell lines. We also

only included sites within an intron or the last exon of a gene

(STAR Methods).

We identified a total of 35,882 polyA sites across 12,617 de-

tected genes. We found that 8,558 genes exhibited usage of

two or more polyA sites in our dataset (and 5,661 genes ex-

hibited usage of three or more) (Figure S1A). The majority of

polyA sites contained the canonical AATAAA/ATTAAA cleavage

motif upstream of the cleavage site, as expected (Figure S1B).

We validated our predicted polyA sites using 30 RACE in combi-

nation with Illumina sequencing at 7 loci and found that our pre-

dicted polyA sites were highly consistent with sensitive mapping

of 30 transcript ends (STAR Methods; Table S3; Figures S1C and

S1D).49,50 We repeated our 30 RACE experiment in NUDT21-per-

turbed cells to assess our ability to detect changes in polyA site

usage and observed high concordance (R = 0.86) when
4410 Cell 187, 4408–4425, August 8, 2024
comparing the effect of NUDT21 perturbation between the 30

RACE and CPA-Perturb-seq data (Figures S1E–S1G). We also

found high correlation between our estimated polyA site usage

ratios and transcriptome-wide quantifications derived using

bulk gold-standard assays PAPERCLIP and A-seq (STAR

Methods; Figures S1H and S1I).51,52

We observed diverse effects on polyA site usage across regu-

lators (Figure 1C and S3), and these changes were reproducible

across biological replicates and multiple independent sgRNAs

(3–4 per gene; Figure S2B). We used the polyA site/cell count

matrix for perturbed cells, along with 4,336 NT controls, as input

to linear discriminant analysis (LDA), UMAP visualization (Fig-

ure 1D), and unsupervised clustering of the polyA sitematrix (Fig-

ure S2C). These analyses revealed that cells clustered not only

by perturbation but also into broader complexes. For example,

cellular profiles after NUDT21 and CPSF6 (both members of

the CFIm complex) perturbation were highly correlated, as

were profiles for members of the CPSF (CPSF1–4 and FIP1L1),

CSTF (CSTF1/3), and polymerase-associated factor (PAF)

(PAF1, CTR9, LEO1, and CDC73) complexes.

These results suggest our dataset can be used to uncover

complex-specific ‘‘modules’’ of co-regulated polyA sites, each

of which are responsive to perturbation by functionally related

regulators. However, we note that changes in the polyA site/

cell count matrix can reflect both changes in polyA site utilization

and changes in the overall abundance of the gene. For example,

when knocking down CSTF3 (Figures 2A–2D), we identify cases

where changes in the utilization of a gene’s proximal polyA site

correspond exclusively to a change in total RNA abundance

(ATP6V1G1), exclusively to a change in transcript length due to

30 UTR shortening (HNRNPH3), or to changes in both abundance

and relative isoform usage (CDK1).

Quantifying relative polyadenylation levels at single-cell
resolution
To specifically characterize perturbation-driven effects on alter-

native polyadenylation, we sought to design a computational

approach to deconvolve these two effects. While computing ra-

tios of polyA counts for each site within a gene is typically used to

study alternative polyadenylation in bulk analyses, computing

these ratios in scRNA-seq data is typically infeasible or noisy

due to data sparsity. We clearly observed usage of multiple

polyA sites within the same cell, but single-cell polyA site usage

ratios were noisy at lower sequencing depths (Figures S2D and

S2E). Instead, for each polyA site in each single cell, we aimed

to model the degree of over- or underutilization compared with

control cells.

We note that this problem is conceptually similar to quantifying

changes in gene expression in individual cells, as we and others

have addressed using generalized linear models.53–56 We

extended this framework to model alternative polyadenylation

(Figure 2E). We utilized the Dirichlet-multinomial distribution to

model a background distribution of polyA site usage in NT cells,

controlling for gene expression. The Dirichlet multinomial allows

for overdispersion compared with the standard multinomial,57

analogous to use of the negative binomial distribution to model

Poisson overdispersion when modeling gene abundances.58,59

This overdispersion accounts for natural biological heterogeneity
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Figure 2. PolyA residuals quantify alternative polyadenylation at single-cell resolution

(A) Average usage of 6,019 proximal polyA sites in NT cells (x axis) and CSTF3-perturbed cells (y axis). Only genes with at least two tandem polyA sites are

considered. Changes across conditions can reflect changes in relative polyA site usage, total gene expression, or both.

(B–D) Read coverage plots at three loci highlighted in (A). Shading marks the proximal polyA site.

(E) Schematic depicting the procedure to calculate polyA residuals (full description in STAR Methods).

(F–H) Violin plots depicting single-cell gene expression levels (left) or single-cell polyA residuals for the proximal polyA site for NT and CSTF3-perturbed cells. Not

significant (NS) for RNA comparisons indicates absolute log2FC <0.25 or Bonferroni adjusted p value >0.05 using Wilcoxon rank-sum test. NS for polyA residual

comparisons indicates percent change <0.05 or adjusted p value >0.05 in differential polyadenylation analysis described in STAR Methods.
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and ‘‘intrinsic’’ noise that occurs within the background popula-

tion.56,60 As in sctransform,55 we first parameterize overdisper-

sion estimates individually for each polyA site but then regularize

these estimates across similar sites (STARMethods). The output

of our procedure is a statistical model for each polyA site,

describing its background usage across 4,336 NT control cells.

By comparing the observed counts at each polyA site in each

cell with the expected value and variance from the Dirichlet-

multinomial model, we compute a Pearson residual (polyA resid-

ual) at each polyA site. The sign and magnitude of this residual

describes the cell’s relative deviation from the background distri-

bution for each polyA site. A positive residual reflects that a polyA

site is used more frequently in a single cell relative to the back-

ground distribution, and vice versa. We tested for changes in

polyA residuals using a linear model, enabling us to identify
perturbation-associated changes in polyA site usage without

confounding changes in gene abundance (STAR Methods).

When applied to our previous examples (Figures 2F–2H), this

approach successfully distinguished loci where we observed

changes in transcript structure, abundance, or both. Using the

polyA-residual matrix for LDA-based visualization (Figure S4A)

confirmed that our observed co-regulatory patterns were driven

by coordinated changes in polyadenylation.

Characterizing perturbation-dependent changes in
polyadenylation
We identified 7,402 genes that exhibited differential alternative

polyadenylation (at least one polyA site with differential usage)

in at least one of the 36 gene perturbations, but we observed

substantial differences across regulators. CFIm complex
Cell 187, 4408–4425, August 8, 2024 4411
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members such as NUDT21 exhibited the strongest perturbation

responses (Figure 3A), including widespread changes in both

polyA site usage and total transcript abundance. By contrast,

perturbation of PABPC1 (which binds the polyA tail after nuclear

export61) primarily affected changes in transcript levels but not

structure (Figures 3A and S4B).

We next classified changes in polyA site usage as reflecting

either intronic polyadenylation or tandem polyadenylation, and

for tandem sites, we determined whether they represented

increased usage or the proximal (shortening) or distal (length-

ening) site (STAR Methods; Figure 3A). Most regulators affected

tandem polyadenylation and exhibited a skew of greater than

70% toward shortening or lengthening, which also replicated in

our K562 dataset (Figure S4B; Table S4). 30 UTR shortening

was generally associated with an increase in total gene abun-

dance (Figure S4C), consistent with the association between

30 UTR length and the presence of regulatory elements that

may impact RNA stability.63,64

Comparing our results to previous studies that utilize bulk

30 end sequencing technologies highlighted the advantages of

the Perturb-seq technology in defining perturbation signatures.

Previous studies21,25,26,65 have consistently revealed that

NUDT21 perturbation affects polyA site usage in a subset of

genes (ranging from 375 to 1,600) and leads to 30 UTR shortening

at tandem UTRs. In both our HEK293FT and K562 datasets (Fig-

ures 3A and S4B, respectively), we observed high sensitivity

(more than 5,400 genes exhibited significant changes in polyA

site usage after perturbation) and also high specificity (>91%

of tandem UTR changes resulted in shortening). Similarly,

RBBP6 perturbation has been associated with 30 UTR length-

ening,24–26 but our dataset identifies more genes with high spec-

ificity (>94% 30 UTR shortening, Figures 3A and S4B).

Distinct regulatorymechanisms drive intronic polyA site
usage
We identified eight regulators where perturbation responses

were primarily associated with increased intronic polyadenyla-

tion (Figures 3A and S4D). These included anti-terminator

proteins SCAF8 and SCAF4,22 PAF complex members66

(PAF1, CDC73, and CTR9), PABPN1, RPAP2, and CPSF3L, a

member of the integrator complex.67 Each of these regulators

directly interact with RNA polymerase II or newly synthesized

transcripts,68–72 yet perturbation of these regulators affected

distinct intronic sites. This suggests multiple modes of regulation

of intronic polyadenylation (Figures 3B–3D).

We performed hierarchical clustering to identify intronic regu-

lators with correlated perturbation responses (Figure S4E). We

found that PAF complex members66 (PAF1, CDC73, and

CTR9) regulate similar intronic polyA sites (Figure 3D) and that

there are similar perturbation responses between integrator

complex member CPSF3L and associated protein RPAP2.73

We performed linear modeling to identify features that predicted

changes in intronic polyA site usage (Figure 3E) and found that

features’ predictive strength varied substantially across regula-

tors. Perturbation of PABPN1 was strongly associated with

increased usage of polyA sites within the first intron (Figure 3F).

Consistent with this finding, PABPN1 functions as a tandem

30 UTR regulator74,75 (Figure 3A), but it also participates in the
4412 Cell 187, 4408–4425, August 8, 2024
nuclear surveillance and degradation of short polyadenylated

transcripts by associating with factors that recognize the

50 cap.68

We found that intronic GC content and the distance to the next

cleavage site in a transcript (a measure of elongation time be-

tween cleavage events) were both predictive of the responsive-

ness to PAF1 perturbation. This relationship was strongest for

polyA sites located in the first intron76 but also held for down-

stream sites (Figures S4F and S4G). Only 21% of the regulated

intronic polyA sites in our dataset were responsive to PAF1

perturbation, highlighting that this specific subset of sites was

responsive to broad changes in elongation dynamics.

The integrator subunit CPSF3L and its associated factor

RPAP2 regulated intronic polyA sites across the gene body (Fig-

ure 3F). These responsive sites were primarily located in short in-

trons (median length: 2,660 bp) and in introns with elevated GC

content (Figures 3G, 3H, S4H, and S4I). The integrator complex

has been associated with multiple distinct functions, including

being involved with small nuclear RNA (snRNA) biogenesis67

and driving premature termination upon recognizing paused

promoter-proximal RNAPII.72 As we observed no enrichment

for introns near transcription start sites (Figure 3F), we instead

considered that defects in snRNA processing may drive broader

splicing aberrations affecting intronic polyadenylation. We uti-

lized a previously published RNAmetabolism dataset that calcu-

lated excision speeds for introns from 2,212 genes present in our

dataset (Figure 3I).62 We found that the CPSF3L/RPAP2 signa-

ture was enriched for introns with ‘‘slow’’ excision dynamics,

which, along with their heightened GC content,77 suggests that

they are inefficiently spliced.

Lastly, we identified a clear bifurcation in the identity of

responsive intronic polyA sites from perturbation of two anti-

terminator proteins. SCAF4 predominantly regulated polyA site

use within short introns (median length: 7,529 bp) with high GC

content, while SCAF8 regulated site usage within long introns

(median length: 33,798 bp) with low GC content (Figures 3G

and 3H). Our findings extend previous pioneering work that sug-

gests that SCAF4 and SCAF8 work redundantly to prevent the

use of intronic polyA sites.22 The sensitivity of our assay allows

us to detect phenotypes for both individual perturbations, dem-

onstrates nonredundant roles for these proteins at hundreds of

sites, and identifies determinants that guide this selectivity.

Our analyses demonstrate that intronic polyadenylation is not a

globally regulated phenomenon and that distinct sets of sites

are uniquely sensitive to perturbation of factors regulating

distinct RNA nuclear life cycle components.

Modules of co-regulated tandem polyA sites exhibit
distinct functional properties
We repeated our hierarchical clustering analysis on tandem pol-

yadenylation regulators to identify correlated perturbation re-

sponses (STAR Methods; Figure 4A). Perturbation clusters re-

flected membership structure of core CPA complexes as well

as additional evidence of co-regulation. For instance, RBBP6,

FIP1L1, and PCF11 are not members of the same complex,

but their perturbation causes 30 UTR lengthening at overlapping

sites. We observed highly concordant correlations in our K562

dataset (Figure 4B).
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Figure 3. Characterizing tandem and intronic alternative polyadenylation in CPA-Perturb-seq

(A) (Left) Number of genes with changes in polyA site usage, gene expression, or both after perturbation of each regulator in the HEK293FT dataset. (Middle)

Number of genes with perturbation-driven changes in intronic or tandem polyA site usage. (Right) Number of genes with changes in tandem polyA site usage,

classified by 30 UTR shortening or 30 UTR lengthening.

(B and C) Read coverage plots showing differential usage of intronic sites (boxed) at the ZSCAN9 (B) and EXOSC4 (C) loci.

(D) Heatmap showing polyA residuals for intronic sites that are uniquely differentially utilized after perturbation of PAF complex members (PAF1/CTR9/CDC73),

anti-terminators (SCAF4/SCAF8), PABPN1, and CPSF3L/RPAP2. Each heatmap cell shows the pseudobulk average of cells after grouping by sgRNA identity.

(E) Heatmap showing the importance of different features in predicting intronic polyA site usage for each perturbation. Color represents the t statistic for each

covariate from a predictive linear model (STAR Methods), which was also used for hierarchical clustering.

(F) Metagene plot showing normalized position of intronic polyA sites with significant changes for each regulator.

(G) GC content for introns containing polyA sites with significant changes in usage for each regulator.

(H) Width for introns containing polyA sites with significant changes in usage for each regulator.

(I) Fraction of introns containing polyA sites with significant changes in usage for each regulator, grouped by intron excision speed, as classified by Mukherjee

et al.62

See also Figure S4.
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Figure 4. Modules of co-regulated polyA sites exhibit functional differences

(A) Pearson correlation matrix depicting the relationships between tandem perturbations in HEK293FT cells. Correlations are calculated using the linear model

coefficients learned during differential polyadenylation analysis (STAR Methods). Genes are ordered via hierarchical clustering.

(B) Same as (A), but the correlation matrix is generated from K562 polyA residuals.

(C) Heatmap showing polyA residuals for distal peak sites in module A genes (CSTF and CPSF act in the opposite direction from CPSF6/NUDT21) and module B

genes (CSTF and CPSF act in the same direction as CPSF6/NUDT21). Top 100 polyA sites (ranked by CSTF perturbation) are shown for each module.

(D) Schematic diagram of genes belonging to modules A and B.

(E) Read coverage plots showing polyA site usage of representative genes belonging to modules A (left, CCT6A) and B (right, TMEM106C).

(F) Density plot showing distal site usage in NT control cells for genes belonging to module A (left) vs. module B (right).

See also Figure S4.
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We found that the correlation structure was driven not exclu-

sively by global preferences toward shortening and lengthening

but also by site-specific differences in perturbation response.

Perturbation of RBBP6 (preference toward 30 UTR lengthening)
4414 Cell 187, 4408–4425, August 8, 2024
and CFIm complex members CPSF6 and NUDT21 (preference

toward 30 UTR shortening) showed strongly anticorrelated re-

sponses, reflecting globally opposing regulation. By contrast,

CSTF and CPSF complex members (preference toward 30 UTR
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lengthening) showed only weak anticorrelation with CFIm mem-

bers, reflecting more complex patterns of co-regulation.

To further explore this, we considered the set of genes that ex-

hibited transcriptional shortening after CFIm perturbation (STAR

Methods). We divided these genes based on CSTF perturbation

response, and we observed an expected module (Figures 4C–

4E, module A) of 323 polyA sites (20%) where CSTF perturbation

resulted in an opposing lengthening response. However, we also

identified a module (module B) of 149 (9%) genes where CSTF

perturbation resulted in shortening, phenocopying CFIm pertur-

bation. The remaining 71% of sites did not exhibit changes in uti-

lization upon CSTF perturbation. We observed reproducible pat-

terns at the same loci in K562 cells (Figure S4J).

Moreover, we found that genes that exhibit 30 UTR lengthening

upon CSTF perturbation (module A) strongly favored proximal

site usage in NT cells, while genes with the opposite CSTF

perturbation phenotype (module B) exhibited distal site bias

(Figures 4F and S4K). Variation in the degree of distal bias at

these genes is likely driven by differences in the relative strength

of CSTF activity at their proximal and distal sites.

APARENT-Perturb reveals an interactive cis-regulatory
code
Our identification of reproducible patterns of differential polya-

denylation emphasizes the role of local sequence in determining

a polyA site’s responsiveness to perturbations. We sought

to extend deep learning models that accurately predict

genome-wide patterns of alternative polyadenylation in baseline

conditions41–46 to predict perturbation response. The ability to

successfully capture nonlinear interactions, including positional

and combinatorial interdependencies between motifs, highlights

the ability of these models to learn intricate cis-regulatory

determinants.78

To predict baseline polyA site usage in unperturbed cells, we

used the APARENT2 model, a residual neural net originally

trained on MPRA datasets measured in HEK293FT cells.43

Inspired by the MTSplice model,79 we then trained a new

ensemble-based multi-task perturbation network (APARENT-

Perturb) that predicts polyA site usage in our 10 strongest pertur-

bations, using 200 nucleotide sequences aligned on the core

hexamer and the APARENT2 baseline scores as input (Fig-

ure 5A). APARENT-Perturb accurately predicted the isoform

proportion of polyA sites for held-out genes in the NT condition

(RS = 0.70) and in perturbations (0.65% RS% 0.73, as measured

by 10-fold cross-validation (Figure 5B and S5A).

Next, we performed in silicomutagenesis (ISM), which yields a

set of nucleotide-level ‘‘attribution scores,’’ reflecting the contri-

bution of each base to the model’s prediction.80,81 Importantly,

by subtracting scores of the NT (baseline) output, we isolate

each sequence’s importance in predicting perturbation re-

sponses. For example, the attribution scores of the distal

polyA site in the KMT5A gene highlight an upstream TGTA motif

that is predicted to drive responsiveness to NUDT21 perturba-

tion and a distinct downstream GT-rich region motif that drives

responsiveness to CSTF3 perturbation (Figures 5C and S5B).

For each perturbation, we averaged ISM scores across loci to

identify regions that harbored important sequence elements

(Figures 5D and 5E). We next used a motif discovery tool, TF-
MoDISco,78,82 to cluster the attribution scores of each perturba-

tion into a set of salient motifs (Figures 5D, S5C, and S5D). These

results recapitulate and extend previously established binding

motifs and positions.2,4,46 For example, CSTF1 and CSTF3

displayed a peak of importance in the downstream region with

T- or GT-rich sequences among their top motifs. NUDT21 and

CPSF6 displayed high average importance in the upstream re-

gion of polyA sites but also extended the canonical TGTA motif

with A- and T-rich flanks on both ends. Intriguingly, perturbation

responses of NUDT21 and CPSF6 were also driven by sequence

elements located approximately 30–50 bp downstream (down-

stream element [DSE]). This DSE overlaps with a region of

predicted importance for CSTF perturbation. This reflects a co-

enrichment of functional sequences for both complexes at the

same sites (Figures S5E–S5G), suggesting a regulatory interac-

tion between these factors.

We previously observed that CSTF and CFIm complex mem-

bers could jointly regulate polyA sites in either the same or

opposing directions (Figures 4C–4F). We found that in genes

where CFIm perturbation led to transcriptional shortening and

CSTF perturbation led to lengthening (module A), the DSE at

the proximal polyA site was characterized by sequence elements

with high CSTF attribution scores. However, at genes where

perturbation of both complexes led to transcriptional shortening

(module B), the proximal sites exhibited significantly weaker

sequence elements (Figure 5F, left, p < 2.0 3 10�5, Wilcoxon

two-sided rank-sum test). By contrast, we observed increased

attribution scores for module B genes at distal sites (Figure 5F,

right, p < 1.6 3 10�4). Taken together, these findings suggest a

model where the sequence content at proximal polyA sites is

particularly important in establishing both proximal bias and

perturbation response.

Finally, we simulated individual and pairwisemotif insertions to

identify epistatic interactions between CPA regulators, as has

been done for transcription factors.78,83 For example, the CFIm

complex includes a NUDT21 homodimer, but it is unclear if

and how multiple TGTA motifs affect binding.84,85 APARENT-

Perturb assigned higher importance scores to NUDT21 motifs

with A- and T-rich flanks, so we tested multiple possible flanking

sequences when performing insertions.

When inserting adjacent TGTA motifs at short distances, we

observed synergistic effects on NUDT21 perturbation when

both motifs were surrounded by GC-rich sequences, while an

AT-rich context was associated with sub-additive interactions

(Figures 5G, S5H, and S5I). Insertions of the canonical core hex-

amer andGT-rich DSE element, both of which have been individ-

ually associated with RBBP6 and CSTF regulation,24 exhibited a

cooperative epistatic relationship maximized at 20-bp insertion

distance (Figures 5H and S5J). We verified each of these results

using polynomial feature regression (Figures S5K–S5L). We

conclude that application of deep learning models to Perturb-

seq datasets can reveal a cis-regulatory landscape that encodes

complex patterns of co-regulation across multiple complexes.

Validating sequence predictions by massively parallel
screening with perturbations
Our results suggest that APARENT-Perturb identifies sequences

driving polyA site choice, assigns these sequences to specific
Cell 187, 4408–4425, August 8, 2024 4415
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Figure 5. A multi-task neural network predicts perturbation responses from RNA sequence

(A) Schematic of APARENT-Perturb, an ensemble-based neural network architecture for predicting perturbation responses. Green/blue/red output heads

correspond to model predictions for the K perturbation conditions.

(B) 10-fold cross-validation performance when predicting distal isoform proportions (top row) or differences in distal isoform proportion with respect to the NT

condition (bottom row).

(C) Sequence-specific attribution scores for 2 example perturbations in the KMT5A gene. Attribution scores are displayed after calculating residuals with respect

to NT cells.

(D) Averaged attribution scores as a function of position for 10 perturbations. The 3 top MoDISco motifs are shown for each perturbation (STAR Methods).

(E) Heatmap showing averaged attribution scores for each perturbation, as a function of position, for the distal-most site in each gene.

(F) Mean attribution scores for CSTF1 perturbation in module A vs. module B for both proximal (left) and distal (right) sites. Locations of the core hexamer and

downstream sequence elements (DSEs) are marked with solid and dashed vertical lines, respectively. Plots show the mean attribution score at single-base-pair

resolution (points) as well as the loess-smoothed trend (lines).

(G) Epistasis analysis for dual TGTA motifs in either GC-rich (red) or AT-rich (blue) contexts. The y axis reflects the effect on predicted NUDT21 perturbation after

dual insertion of both motifs, compared to the effect of inserting one motif at a time (STAR Methods).

(H) Epistasis analysis of canonical hexamers and GT-rich motifs, based on the RBBP6 perturbation.

See also Figure S5.
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Figure 6. Validating APARENT-Perturb by performing an MPRA in multiple genetic contexts

(A) Schematic of massively parallel reporter assay (MPRA) used to validate APARENT-Perturb.

(B) Proximal polyA site usage (log odds) for 373WT loci, as predicted by APARENT-Perturb (x axis) and measured by the MPRA (y axis). Predictions are accurate

in both NT (top) and CSTF3-perturbed (bottom) samples and for both native proximal and distal sites.

(C) Change in proximal polyA site usage (log-odds ratio) comparing CSTF3 and NT samples for both sequences predicted by APARENT-Perturb to be responsive

to CSTF3 perturbation (n = 107, right) vs. nonresponsive (n = 109, left). ** indicates p value <0.0001, Wilcoxon test comparing log-odds ratio of responsive to

neutral sequences.

(D) Gene model of GYG2 30 UTR, based on inferred cleavage sites from CPA-Perturb-seq. Region highlighted in red was inserted into the MPRA construct.

(legend continued on next page)
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regulators, and identifies interactions between them. Validating

these predictions at any locus requires two components:

demonstrating that mutating sequence elements with high pre-

dicted importance alters polyA site usage and, additionally,

showing that these alterations are dependent on the presence

of the assigned regulator. We designed modified sequences at

373 loci (resulting in a total of 3,802 wild-type [WT] and mutated

sequences) and leveraged a previously described reporter

construct,43 with minor modifications, to scalably validate

APARENT-Perturb predictions (STAR Methods; Figures 6A and

S6A). We performed the MPRA in samples with and without

CRISPRi perturbation of CSTF3, enabling us to explore the ef-

fects of each sequence mutation with a genetic perturbation.

We inserted each of 3,802 test loci into the reporter’s proximal

site and used constructs with five distal sites of varying

strength42 (STAR Methods; Figure S6B; Table S5). For each ge-

netic condition, we transfected cells with our MPRA library, per-

formed two biological replicates, and observed reproducible

polyA site quantifications (R = 0.96–0.98; Figure S7C).

First, we compared our APARENT-Perturb predictions of

CSTF3 perturbation response to our MPRA. In both NT control

cells (average R = 0.88) and CSTF3KD cells (average R = 0.89),

we observed clear agreement with predicted values for each of

the five distal sites (Figure 6B). Predicted responsive loci

exhibited shifts after CSTF3 perturbation (p < 3.4 3 10�37),

while predicted nonresponsive loci exhibited minimal changes

(Figure 6C).

We next tested whether APARENT-Perturb could identify spe-

cific sequence elements driving this relationship. At each locus,

we identified and scrambled the 9-bp sequence element with the

maximal ISM score for the CSTF3 perturbation (STAR Methods;

example in Figures 6D and 6E). These mutations correctly abro-

gated the difference between NT and CSTF3-perturbed cells

(Figures 6F and S6D). Moreover, we also designed ‘‘super-

responsive’’ loci, analogous to the model-guided design of syn-

thetic enhancer sequences for TF binding.86,87 We engineered
(E) (Top) Attribution scores from the APARENT-Perturb CSTFmodel at the distal si

and upon making sequence alterations. These included shuffling a predicted

designing synthetic mutations to maximize CSTF3 response. Colored nucleotides

the GYG2 locus. Lines represent the fraction of reads that include a polyA seq

perturbed cells (STAR Methods).

(F) Effect of performing the sequence alterations described in (E) at 107 CST

binding motif. The log-odds ratio of CSTF3 compared to NT (y axis) is shown

<0.0001; * indicates p value = 0.0001–0.05; NS, not significant.

(G) Log-odds ratio comparing proximal polyA site usage in NUDT21 to NT sample

as in (F). ** indicates p value <0.0001.

(H) Fraction of polyA reads, indicating proximal cleavage, for the FAM13C locus in

CSTF sequence element.

(I) Density of distal polyA site usage for WT module A sequences (n = 47, green) an

site (right, orange).

(J) Genemodel of the 30 UTR of PGRM1 (amodule B gene) based on inferred cleav

MPRA construct.

(K) Effect of insertion of a CSTF-responsive sequence element into the construc

(L) Effect of inserting NUDT21 motif (TGTA) into neutral sequences (y axis, log-o

rounded by AT-rich (left) and GC-rich (right) flanks, by distal site.

(M) APARENT-Perturb ISM scores for sequences with individual or dual insertion

(N) Epistasis odds ratio (y axis) of inserting TGTA motifs with AT-rich flanks at

** indicates p value <0.0001 for one-sided t test of epistasis odds ratio = 1.

See also Figure S6.
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10 or 20 single-base-pair mutations to native loci that

APARENT-Perturb predicted would increase the responsivity

of the locus (STAR Methods). These sequences exhibited

increased alterations to polyA site usage in the MPRA upon

CSTF3 perturbation (Figure 6F).

We also found that APARENT-Perturb successfully identified

CSTF3-responsive elements that lack the GT- or T-rich motif

that has been linked to CSTF binding88,89 (10% of responsive

sequences, Figure 6F). Conversely, a subset of sequences that

we predict and validate to be nonresponsive to CSTF3 perturba-

tion contain a canonical DSE (Figure S6E). This highlights

that APARENT-Perturb outperforms generic motif-based ap-

proaches to predict regulator activity.

Our previous analyses (Figures 5D, 5E, and S5D–S5F) sug-

gested that sequence features driving CSTF regulation are also

important for NUDT21 responsivity. Testing the same constructs

in NUDT21 KD cells revealed that scrambling CSTF motifs also

affected the responsivity to NUDT21 perturbation (p < 3 3

10�11, Figures 6G, 6H, and S6G). These regulatory elements

were located downstream of the canonical hexamer and did

not contain downstream TGTA motifs (Figure S6H). This effect

was reduced compared to CSTF3 perturbation, possibly ex-

plained by remaining NUDT21 regulatory motifs (Figure S6F).

This likely reflects a sequence-driven indirect regulatory interac-

tion between NUDT21 and CSTF3.

We also tested our hypothesis that differential CSTF binding

determines the proximal vs. distal bias we observed in module

A vs. module B genes, respectively. To the proximal site of

module B genes, we inserted a 9-bp sequence predicted by

APARENT-Perturb to drive CSTF3 responsiveness. Strikingly,

we found that this single sequencemodification reversed the dif-

ference between the modules, shifting loci from distally biased

(WT sequences) to proximally biased (mutant sequences)

(Figures 6I–6K and S6I). The effect of these alterations was

reduced in CSTF3-perturbed cells, highlighting that CSTF3 ac-

tivity drives this behavior (Figure S6J). By contrast, shuffling
te of the GYG2 gene (chrX:2882818), both for the wild-type (WT) sequence (top)

CSTF response element to minimize the effect of perturbation (middle) and

indicate nucleotides that were altered. (Bottom) Visualization of MPRA data at

uence (polyA reads), which indicates proximal cleavage, for NT and CST3F-

F3-responsive sites, both with (left) and without (right) the canonical CSTF

for improved and shuffled sequence alterations (x axis). ** indicates p value

s (y axis), both for WT sequences and after shuffling CSTF sequence elements,

both NUDT21-perturbed andNT cells, both forWT sequence and after shuffling

d after inserting CSTF-responsive sequence elements into the proximal polyA

age sites fromCPA-Perturb-seq. Region highlighted in redwas inserted into the

t depicted in (J) on the fraction of polyA reads (y axis).

dds ratio of polyA site usage for insertion in NT cells) when the motif was sur-

s of the TTTGTAAT motif at the PIP5K1C locus.

multiple distances (x axis) for both NT (gray) and NUDT21 (green) samples.
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the predicted CSTF response elements of module A proximal

sites caused a shift toward distal polyA site usage (Figure S6I).

This demonstrates that APARENT-Perturb successfully identi-

fied sequence elements that dictate proximal vs. distal bias in

addition to perturbation response.

Lastly, we tested APARENT-Perturb’s predictions of epistatic

relationships between sequence motifs. We performed single

and dual insertions of the NUDT21 TGTA motif into 49 loci,

testing both AT-rich flanks and GC-rich flanks. Consistent with

APARENT-Perturb’s predictions, single insertions of the

AT-rich motif resulted in significantly stronger (p < 3.0 3 10�54)

alterations in polyA site usage compared to insertions of the

GC-rich motif (Figure 6L). The strength of this insertion was

weakened in NUDT21-perturbed cells compared to NT controls

(Figure S6K). We also observed sub-additive effects when per-

forming dual insertions of TGTA motifs with AT-rich flanks at

short distances (Figures 6M and 6N), although insertion of GC-

flanking motifs exhibited minimal effects.

Identification of CPA regulators from genome-wide
screening datasets
To understand how additional regulators affect polyA site usage,

we reanalyzed a recently published genome-wide Perturb-seq

(GWPS) dataset47 performed in K562 cells. We computed polyA

residuals and used these as input to differential polyadenylation

analysis (STAR Methods). As the GWPS dataset contained far

fewer cells per perturbation (median 94 cells vs. 1,142 in our da-

taset for the 36 overlapping perturbations), we identified sub-

stantially fewer genes exhibiting changes in polyA site usage

(median of 72 genes per overlapping perturbation compared to

1,389 in our data). However, the GWPS dataset still enabled ac-

curate characterization of each regulator. For example, we

observed concordant biases toward 30 UTR shortening or

lengthening induced by perturbation of tandem polyadenylation

regulators across both datasets (Figure 7A).

To focus on regulators that directly modify RNA, we restricted

our analysis to a set of 1,280 RNA binding proteins.90 We identi-

fied 134 perturbations with polyA site usage changes in at least

100 genes (Figure 7B; Table S4), including highly correlated per-

turbations (Figures 7C and S7A). Perturbation of CFIm complex

members CPSF6 and NUDT21 and transcription-export com-

plex member THOC3 exhibited correlated 30 UTR shortening

(Figures S7B and S7D), while a module consisting of up-frame-

shift complex members, small ribosomal subunits, and the ribo-

somematuration factor were associated with 30 UTR lengthening

(module 4; Figure S7G). While these genes are well-studied reg-

ulators of translational control and RNA stability, none have been

previously associated with regulating polyA site choice. We also

identified amodule with components of the large ribosomal sub-

unit along with the translation initiation factor EIF6 (module 2;

Figure S7E), suggesting tight crosstalk between alternative poly-

adenylation and multiple RNA regulatory processes.

We found correlated perturbation responses between mem-

bers of the poly(A) tail exosome targeting (PAXT) complex

(module 3), which also contained nuclear cap-binding complex

member NCBP2 and splicing regulatorMBNL1.68,91–93 Perturba-

tion of this module was associated primarily with upregulation of

intronically polyadenylated transcripts (Figures 7B, 7D, and
S7C). This response is likely driven by the PAXT complex’s role

in degrading prematurely terminated RNA transcripts,68,94

although the surveillance machinery that specifically distin-

guishes premature transcripts remains unknown.95

Lastly, we aimed to investigate our previous hypothesis that

intronic polyA site changes associated with integrator perturba-

tions were due to changes in splicing dynamics (Figures 3D and

3I). Our CPA-Perturb-seq integrator signature was most corre-

lated with members of the survival motor neuron (SMN) complex

and other integrator complex members, which consisted of an

additional module (module 5; Figures 7E, 7F, and S7H). We

confirmed that the set of splice-module-regulated sites in

GWPS uniquely overlapped with our integrator perturbation

response signature (Figure 7G). Finally, we observed that these

sites were located in introns with weaker canonical 50 donor
splice site scores, consistent with reduced splicing efficiency

(Figure 7H).96,97 This provides orthogonal support for our hy-

pothesis that integrator perturbation changes polyA site usage

within introns that are inefficiently spliced, demonstrating their

sensitivity to changes in splicing dynamics.

We conclude that 30 scRNA-seq data can be combined with

tailored computational pipelines to explore cellular heterogene-

ity in polyA site usage, and we have developed an open-source

R package, PolyA Site analysis using relative Transcript Abun-

dance (PASTA), that implements the analytical methods

described in this manuscript. PASTA is fully compatible with

our analytical toolkit Seurat,98 and the software release

includes a vignette demonstrating how users can explore cellular

heterogeneity in alternative polyadenylation in a dataset of

circulating human peripheral blood mononuclear cells (STAR

Methods). These data and code resources will facilitate the char-

acterization of heterogeneous alternative polyadenylation in

diverse biological systems and a deeper understanding of the

sequences and regulatory factors that govern post-transcrip-

tional regulation.

DISCUSSION

In this study, we demonstrate that the Perturb-seq technology,

which has been widely utilized to study transcriptional regulatory

networks, can be successfully applied to study post-transcrip-

tional regulation.We introduce a statistical framework to quantify

changes in relative polyA site usage across regulators at single-

cell resolution and identify modules of co-regulated polyA sites.

Our CPA-Perturb-seq dataset revealed striking heterogeneity

in perturbation response, including the number, type, and direc-

tionality of changes associated with each regulator. This demon-

strates that alternative polyadenylation is not uniformly regu-

lated, where all polyA sites are equally sensitive to perturbation

of core regulators. Instead, we consistently observed evidence

of distinct regulatory responses across modules of polyA sites.

Using our deep neural network, APARENT-Perturb, we found

that this local regulatory structure is encoded in part by

sequence-specific elements surrounding the cleavage site.

By integrating previously trained sequence-based models

with our perturbation data, we directly learn associations be-

tween sequence elements and regulators, providing a more

mechanistic understanding of cis-regulatory element function,
Cell 187, 4408–4425, August 8, 2024 4419
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Figure 7. Characterizing heterogeneity in relative polyA site usage in genome-scale Perturb-seq datasets

(A) 30 UTR shortening preference observed after perturbing tandem regulators in the CPA-Perturb-seq dataset (x axis) and the GWPS dataset (y axis).

(B) Same as Figure 3B but for the GWPS dataset.

(C) Correlation matrix depicting the relationship between perturbations in the GWPS dataset, as in Figure 4A. Representative genes for each of the six correlated

modules are shown on the left. All genes are listed in Figure S7A.

(D) Representative polyA sites (n = 100) whose usage increased upon perturbation of exosome/PAXT complex members.

(E) CPSF3L perturbation (from CPA-Perturb-seq) was most correlated (y axis) with other members of the integrator complex and spliceosome factors in GWPS

data.

(F) Representative read coverage plot depicting shared changes in polyA site usage after perturbation of CPSF3L, other integrator complex members, and SMN

complex members.

(G) Enrichment of CPA-Perturb-seq intronic signatures (y axis) in GWPSmodule-responsive sites. Dot size corresponds to�log10(p value) from hypergeometric

enrichment test, and color corresponds to the average polyA residuals for each signature.

(H) MaxEnt scores for splice donor sites (50) of all intronic polyA sites quantified in our dataset vs. those with significantly increased usage in CPSF3L/RPAP2

perturbation. ** indicates p value <0.0001, Wilcoxon test.

See also Figure S7.
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including interactions between regulators. We note that this

strategy could be extended to additional sequence-based

deep learning models.99,100

While our analyses aimed to focus on regulatory mechanisms

that influenced CPA decisions, we repeatedly observed cases

where additional RNA regulatory processes altered the relative

abundance of alternatively polyadenylated transcripts.We found

that perturbation of proteins with roles in RNA polymerase elon-

gation, RNA export, translation, and splicing resulted in differen-

tial usage of polyA sites, highlighting extensive interdepen-

dencies between RNA regulatory processes. Future work may

exploit these interdependencies to infer RNA kinetic parameters

from 30 scRNA-seq data. More broadly, our statistical method

may be extended to characterize additional sources of transcrip-

tomic diversity, such as alternative splicing.

Our approach has limitations for measuring and interpreting

changes in polyadenylation. Although correlated perturbation re-

sponses across regulators likely reflect shared function, we

cannot exclude the possibility that indirect effects (where the

perturbation of one regulator affects the expression of another)

also can affect correlation structure. Perturbations can introduce

changes to both production and degradation rates of individual

transcripts, and Perturb-seq cannot conclusively distinguish

between these two phenomena. Also, perturbations that

substantially shorten the length of the polyA tail may generate

biases in transcript capture that our study cannot address.

Lastly, our annotation of polyA sites is based on the polyA_DB

database, and we may occasionally misclassify tandem polyA

sites as intronic. Future studies that combine the CPA-Perturb-

seq workflow with RNA metabolic labeling101,102 or long-read

sequencing103 canmore accurately quantify isoforms and repre-

sent exciting extensions of our work.

Looking forward, we believe that scRNA-seq analyses of post-

transcriptional regulation from perturbation screens and primary

samples will be mutually informative. Functional genomics tools

like Perturb-seq are well suited to identify targets of molecular

regulators. We envision that the molecular signatures inferred

from experiments where causal relationships are established

represent important resources to interpret molecular signatures

where causal relationships are unknown, such as disease condi-

tions. Integration of these datasets therefore represents a poten-

tial path forward for systematic reconstruction of regulatory

networks guiding the RNA life cycle.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Endura Electrocompetent Cells Lucigen Cat# 60242-2

One Shot Stbl3 Chemically Competent E. coli ThermoFisher Cat# C737303

Critical commercial assays

Chromium Single-Cell 30 v3 with Feature Barcoding 10X Genomics PN-1000075, PN-1000153, PN-1000079

Deposited data

HEK293FT- Perturb-seq This paper GEO: GSE269600

K562- Perturb-seq This paper GEO: GSE269600

HEK293FT- APARENT-Perturb MPRA This paper GEO: GSE269600

HEK293FT- 30RACE This paper GEO: GSE269600

polyA_DB version 3.2 Wang et al.7 https://exon.apps.wistar.org/polya_db/v3/

HEK293 cells- Aseq Martin et al.51 GEO: GSE37401

HEK293 cells- PAPERCLIP Hwang et al.52 GEO: GSE66092

HEK293 cells- intron excision speeds Mukherjee et al.62 GEO: GSE84722

K562 cells- Genome-scale Perturb-seq Replogle et al.47 SRA: SRP376262

Experimental models: Cell lines

K562 KRAB-dCas9-MeCP2 This paper N/A

HEK293FT KRAB-dCas9-MeCP2 Wessels et al.36 N/A

Oligonucleotides

See Table S3 for 30 RACE primers This paper N/A

See Table S5 for MPRA primers This paper N/A

Recombinant DNA

lentiGuideFB-Puro-A Wessels et al.36 Addgene #192506

psPAX2 N/A Addgene #12260

pMD2.G N/A Addgene #12259

APA Reference Library Linder et al.43 Addgene #193784

lentiCRISPRi(v2)-Blast Morris et al.104 Addgene #170068

Software and algorithms

Cellranger v6.0.0 10X Genomics https://www.10xgenomics.com/software

polyApipe v1.0 N/A https://github.com/MonashBioinformatics

Platform/polyApipe

CITE-seq-count v1.4.2 N/A https://github.com/Hoohm/CITE-seq-Count

Sinto v0.9.0 N/A https://github.com/timoast/sinto

Seurat v5.0 Hao et al.98 https://github.com/satijalab/seurat

Signac v1.12.0 Stuart et al.105 https://github.com/stuart-lab/signac

PASTA This paper https://github.com/satijalab/PASTA
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Rahul

Satija (rsatija@nygenome.org).

Materials availability
No unique reagents were generated for this study.
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Data and code availability
d The CPA-Perturb-seq datasets generated for this study are available for download at https://zenodo.org/record/7619593#.

Y-P7Zi1h2X0. All raw data are avilable in the GEO database under the accession number GEO: GSE269600.

d CPA-Perturb-seq data can be explored via custom UCSC GenomeBrowser tracks, available at https://satijalab.org/cpa-

perturb-seq.

d Seurat and PASTA are both available as open-source R packages at https://github.com/satijalab/seurat and https://github.

com/satijalab/PASTA.

d Code to train and interpret the APARENT-Perturb model is available at https://github.com/johli/aparent-perturb.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture and maintenance
HEK293FT (HEK) and K562 cells were acquired from ThermoFisher (R70007) and ATCC (CCL-243), respectively. Monoclonal

HEK293FT and K562 lines that constitutively express KRAB-dCas9-MeCP2 (CRISPRi) were generated as previously described.36,104

HEK293FT and K562 cells were maintained in DMEM (Caisson DML23) or RPMI (Thermo Fisher 11875119), respectively, supple-

mented with 10% fetal bovine serum (Serum Plus II Sigma-Aldrich 14009C) and with no antibiotics at 37�C and 5%CO2. Constitutive

CRISPRCas effector expressing cells weremaintained using 5mg/mL Blasticidin S (ThermoFisher A1113903). Guide RNA expressing

cells were grown using 1mg/mL puromycin (ThermoFisher A1113803).

METHOD DETAILS

sgRNA design, virus production, and transduction
We selected the most effective sgRNAs from previous genome-wide CRISPR-interference screens106,107 along with non-targeting

(NT) sgRNAs that showed no depletion. Individual sgRNAs were cloned into lentiGuideFB-Puro-A (Addgene #192506) as previously

described.36 All constructs were confirmed by Sanger sequencing. Individual plasmids were pooled accounting for the relative ex-

pected essentiality of target genes to compensate for the expected loss of cells with essential gene sgRNAs.

For pooled virus production we seeded 13107 HEK293FT cells per 10 cm dish 12–18 h before transfection [60mL PEI, 6.4 mg

psPAX2 (Addgene #12260), 4.4 mg pMD2.G (Addgene #12259) and 9.2 mg of the plasmid pool]. Six to 8 h post-transfection, the me-

dium was exchanged for 10 mL of DMEM +10% FBS containing 1% bovine serum albumin (BSA). Viral supernatants were collected

after additional 48 h, spun down to remove cellular debris for 5 min at 4�C and 10003 g and passed through a 0.45 mm filter prior to

storage at �80�C.
For single-cell experiments we transduced 33106 HEK293FT or K562 CRISPRi cells per 12-well with an MOI of <0.1 (<10% sur-

vival) ensuring high coverage (cells per sgRNA) of at least 10003 and a single integration probability >95%. The cells were selected

with 1mg/ml puromycin starting at 24 h post-transduction for at least 48 h for HEK293FT cells and at least 5 days for K562 cells. Cells

were maintained with blasticidin and puromycin until the single-cell experiment 6–7 post transduction.

Direct capture Perturb-seq and sequencing
We performed scRNA-seq (10x Genomics Chromium Single Cell 30 Gene Expression v3 with Feature Barcoding technology for

CRISPR screening) 6–7 days post-transduction. Before the run, cell viability was determined (>95%). We leveraged Cell Hashing

in order to super-load (�40,000 cells/lane) the Chromium instrument.108 Gene expression and sgRNA feature libraries were con-

structed following the manufacturer’s protocol. Cell Hashing libraries (Hashtag-derived oligos, HTOs) libraries were prepared

following the recommended protocol on cite-seq.com. All libraries were sequenced on Illumina NovaSeq S4 flow cells.

Processing of single-cell gene expression data
HEK293FT and K562 scRNA-seq and Feature Barcoding data was processed using CellRanger (v6.0.0, ‘‘cellranger count’’). HTO

data was quantified using the CITE-seq-count package (v1.4.2). Count matrices were then used as input to the PASTA R package,

which leverages both Seurat (v5.0)98 and Signac (v1.12.0)105 to perform downstream analyses. HTO and sgRNA counts were normal-

ized using the centered log-ratio transformation approach. We retained cells with unique HTO and sgRNA assignments generated

using the MULTIseqDemux109 function in Seurat.

Quantifying polyA site usage
CellRanger output BAM files were used as input to polyApipe (https://github.com/MonashBioinformaticsPlatform/polyApipe), a

computational workflow which quantifies polyA site usage at single-cell resolution. Briefly, this workflow comprises two steps.

First, polyApipe attempts to discover a set of polyA sites that are utilized in the dataset. All reads in the overall sample that contain a

stretch of at least 5 softclipped A’s at the 30 end of the read that were not present in the genomic sequence are annotated as ‘‘polyA

reads.’’ This subset of reads is used for peak calling.We required at least 5 ‘‘polyA reads’’ across all cells to form a polyA site. In cases
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where two independently discovered sites fell within the defined counting region (here: 300 nucleotides upstream of the identified

polyA site) the peak with the higher polyA read count was retained.

Second, polyApipe quantifies the read coverage, at each of these polyA quantification windows, for each single cell in the dataset.

For counting, all reads were used, regardless of whether they were originally annotated as ‘‘polyA reads.’’ The outputs of polyApipe

are a tabular count file and counts matrix quantifying the usage of each polyA site at single-cell resolution, as well as a GFF file that

describes the location of the inferred polyA sites. These outputs can be read via the PASTA package using the function

ReadPolyAPipe.

To further ensure that our downstream analysis was conducted on bona fide polyA sites, we intersected these sites with those in

PolyA_DB version 3.2 (polyAdbv3),110,111 a catalog of sites identified from deep sequencing data using the (30READS) method. We

lifted over these sites from hg19 to hg38.We retained all polyA sites identified by polyApipe that were located within 50 nucleotides of

a polyAdbv3 polyA site. We additionally used polyAdbv3 to assign a gene annotation to each polyA site, and further restricted our

downstream analyses to polyA sites that are either located within an intron, or the last exon, of a transcript. The same set of polyA

sites was used for analysis in K562 cells by providing the HEK293FT GFF file as an input to polyApipe.

In order to visualize the usage of polyA sites, we first used umitools to deduplicate the aligned BAM files. We then used the blocks

function in Sinto (https://github.com/timoast/sinto) to construct a fragment file from the deduplicated BAM file. We use the function

PolyACoveragePlot in PASTA to visualize read coverage throughout this manuscript (i.e., Figure 1C). In the bottom of these plots, we

visualize the locations that represent the polyA sites identified by polyApipe.

30 rapid amplification of cDNA ends (30 RACE)
We performed 30 RACEwith an Illumina sequencing readout to validate the CPA-Perturb-seq workflow for identifying and quantifying

polyA site usage. We pre-selected 10 genomic loci for targeted profiling, and in each case, designed a locus-specific primer that

binds 100–150bp upstream of the predicted proximal cleavage site. As previously described, CRISPRi-expressing HEK293FT cells

were transduced with lentivirus for guides targeting NUDT21 or NT (single guide per condition, 2 transduction replicates). 7 days

post-transduction, RNA was extracted using the Zymo DirectZol RNA purification kit with DNase I treatment following the manufac-

turer’s protocol (Zymo R2052). We divided RNA into 1ug aliquots, using a separate aliquot for each targeted locus. For each locus,

the 1 mg of total RNAwas reverse transcribedwith SuperScript IV Reverse Transcriptase (Thermo Fisher 18090200) to generate cDNA

following manufacturer instructions. The anchored poly dT primer for reverse transcription contained a Nextera Read 2 handle

(NexteraR2-T18VN; Table S3). After reverse transcription, RNA hydrolysis was performed using RNase H (Thermo Fisher

18021071) and then samples were purified using a DNA Clean & Concentrator-5 kit (Zymo D4013). In the first locus-specific PCR,

purified cDNA was amplified with KAPA HiFi HotStart ReadyMix (Kapa Biosystems 07958935001) using the locus-specific primer

(Table S3) and adds a Truseq Read 1 handle and a reverse primer containing a sample-specific barcode (P7-index-NexteraR2)

(Table S3) with the following cycling conditions: 98�C for 3 min; 15 cycles of 98�C for 20 s, 65�C for 20 s and 72�C for 1 min 20 s;

followed by 72�C for 5 min. After amplification, samples were 1X SPRI purified. In the second PCR to prepare samples for next-gen-

eration sequencing, the purified product from the previous PCR was amplified with KAPA HiFi HotStart ReadyMix (Kapa Biosystems

07958935001) using a forward PCR primer add sequencing adaptors (P5-TruseqR1; Table S3) and a reverse P7 PCR primer

(Table S3) with the following cycling conditions: 98�C for 3 min; 15 cycles of 98�C for 20 s, 60�C for 20 s and 72�C for 1 min 20 s;

followed by 72�C for 5 min. Samples were sequenced using an Illumina MiSeq (300 cycle kit), allocating 200 cycles for R1.

In order to identify cleavage positions at single-nucleotide resolution, we first assigned reads to a sample and gene bymatching the

sample-specific barcode, allowing 1 bp mutation. We then searched for polyA tails in these reads (18 A nucleotides with up to 3 mu-

tations). If a polyA tail was found, this was evidence of proximal cleavage and if no polyA tail was encountered, this was evidence of

distal cleavage. For both proximal and distal reads, we additionally required that the last 20bp prior to the cleavage site or end of read

were consistent with the expected genomic sequence. This approach enables us to quantify proximal polyA site usage at each locus,

but due to limitations of Illumina sequencing, can potentially be biased against capturing transcripts that use the distal site (as they

will have larger insert size). We therefore proceeded only with seven out of ten loci where wewere able to detect at least 10%of reads

showing evidence of distal cleavage.112 For these loci, we assigned the cleavage site as 1 bp upstream of themost abundant position

where we observed a polyA tail in our NT control samples. We compared this position to our inferred cleavage site in CPA-Perturb-

seq (Figure S1D).

To quantify the fraction of proximal site polyA usage at each locus, we divided the number of reads where we observed a polyA tail

to the total number of filtered reads, as described above. We then calculated the difference in proximal site usage between NUDT21

and NT samples for each locus. We also calculated a similar metric from our CPA-Perturb-seq data by summing counts across all

cells receiving NT and NUDT21 guides at the same loci. We observed high consistency between our estimates of NUDT21 pertur-

bation strength in both 30 RACE and CPA-Perturb-seq data (Figure S1G).

Comparison to A-seq and PAPERCLIP
To compare our polyA site quantifications with previously developed gold-standard methods for polyA site usage (Figures S1H and

S1I), we leveraged studies that have profiled polyA site usage in HEK293FT cells with A-seq and PAPERCLIP technologies.51,52 Fastq

files were downloaded using sratoolkit (SRA ID’s SRR453410/SRR453411 for A-seq and SRR1810991/SRR1810991 for

PAPERCLIP). We used Cutadapt 4.0 to retain reads with sequencing quality of at least q30 and trim both adapters and long polyA
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stretches.113 After collapsing duplicate reads using fastx_collapser, we aligned to GRCh38 with STAR.114 We quantified polyA site

usage for the same regions as in our single-cell data, using featureCounts on the same GFF file as generated above.115

First, we examined reproducibility between replicates for NT cells in our single-cell data and control samples for A-seq and

PAPERCLIP. To focus on polyA sites that fell within genes that were adequately captured and quantified, we removed genes that

fell into the bottom 10% of expression for each experiment. For all replicate comparisons, we considered polyA sites that fell within

genes that were adequately captured in both replicates and calculated the percent polyA site usage for each polyA site within a gene

for each replicate. We then calculated the Pearson correlation of the percent polyA site usage between replicates. For visualization,

we calculated a 2D bivariate normal kernel density estimation, as implemented in the MASS package. We used the same procedure

to assess the correlation across technologies, considering polyA sites that fall within genes adequately captured with both

technologies.

Mixscape analysis and visualization
We have previously developed a computational toolkit, Mixscape,48 to analyze and interpret Perturb-seq datasets. Mixscape aims to

address confounding sources of heterogeneity in these datasets, and to identify cells that may have received a sgRNA but do not

exhibit strong molecular evidence of successful perturbation. We use the polyA counts matrix as input to Mixscape analysis. Briefly,

for each regulator, Mixscape considers all cells receiving a sgRNA targeting that regulator, and models them as a Gaussian mixture

model with two components. The parameters of the first component are constrained to reflect the distribution of NT control cells. The

second learned component should therefore reflect successfully perturbed cells. For each cell that receives a sgRNA, Mixscape cal-

culates a posterior probability for each component. Cells that were classified (posterior probability >0.5) as belonging to the first

component are similar to NT control cells (‘‘non-perturbed’’), and therefore discarded from further analysis.

In order to visualize our dataset, we used theMixscapeLDA function. All perturbed andNT cells were used as input for this analysis.

Linear discriminant analysis (LDA) is a supervised dimensional reduction technique that attempts to find a low-dimensional subspace

that maximally discriminates between different groups (‘perturbations’) in our data. As previously described,48 to prevent overfitting

during this procedure, we reduce the dimensionality of our dataset to 360 features prior to running LDA (10 projected principal

components 3 36 perturbations). Thirty-six components returned from LDA are used as input for 2D visualization in UMAP

(Figure 1D).

Single-cell metric for polyA site usage
We sought to develop a single-cell metric for polyA site usage that adjusts for total abundance of a gene in order to prioritize the

identification of relative changes in polyA site usage. We focus our analyses on genes that contain more than one polyA site, and

leverage NT cells in order to estimate a background distribution describing the usage (counts) of each polyA site. We utilize the Di-

richlet-multinomial distribution, allowing us to model overdispersion (relative to the multinomial distribution) that frequently arises in

the context of scRNA-seq, due to both biological and technical heterogeneity. The parameters of the Dirichlet multinomial include

both the total number of reads observed across all polyA sites, as well as a vector a that yields a probability distribution parameter-

izing the relative usage of different polyA sites.

Our approach consists of three steps, as described in detail below. (1) Fitting Dirichlet-multinomial parameters for background

polyA site usage within each gene individually, using NT cells (2). Regularizing variance estimates across similar polyA sites (3).

Comparing polyA sites observed in each perturbed single cell to this model and calculating model residuals (polyA residuals).

Fitting Dirichlet-multinomial parameters

We define the following:

Xijk : number of counts at polyA site k (1 % k%KÞ for gene j in cell i

nij: total number of reads in cell i across all polyA sites in gene j nij =
PK
k = 1

Xijk :

aj ˛RK : vector of Dirichlet parameters for each of K polyA sites, where each ajk > 0

Then, for each cell i, we model the counts for all polyA sites within gene j using the Dirichlet-multinomial distribution.

Xij � DirMultiðnij;ajÞ
For each gene, we independently estimate the Dirichlet parameters, ba j, using count data from 4,336 non-targeting control cells.We

obtained parameter estimates using theMGLMfit function in theMGLMpackage116 (dist = ‘‘DM’’), which obtains maximum likelihood

parameter estimates using iteratively reweighted Poisson regression.117

Once we have obtained the parameter estimates, ba j, we can calculate the expected counts falling into each polyA site, as well as

the variance of these counts under our background model:

EðXijkÞ = nij

ajkPK
k0 = 1 ajk0

(Equation 1)
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VarðXijkÞ = nij

ajkPK
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0
= 1 ajk
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0
= 1

ajk
0

!  
nij+

PK
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PK

k
0
= 1 ajk

0

!
(Equation 2)

We calculate these values for each polyA site in each NT cell.

Regularizing variance estimates

As has been repeatedly observed for both bulk and scRNA-seq data, individual variance estimates obtained from generalized linear

models with overdispersed error distributions can be noisy and subject to overfitting.56,58,59 Therefore, after obtaining estimated var-

iances for our background model, we regularize these estimates across similar polyA sites in order to increase robustness.

We reasoned that polyA sites could be considered similar not only if they were utilized at a similar relative abundancewithin a gene,

but also if the overall gene abundance was similar. We therefore regularize across two dimensions, the expected value of the number

of reads falling into each polyA site, EðXijkÞ, as well as the total number of reads that fall into polyA sites in that gene, nij.

To regularize, we first define a 303 30 non-overlapping grid with evenly spaced intervals from the minimum of each dimension to

the 99th percentile in NT cells. Each bin is defined by a range of evenly spaced parameter values (intervals) for each of the two di-

mensions. After defining this grid, we perform the following procedure for each NT cell: we assign each of the polyA sites to one of the

bins based on two dimensions, EðXijkÞ and nij. For each polyA site, we add estimated variance from Equation 2 to the bin. After

completing this procedure for all NT cells, we sample 10,000 observations (polyA sites) from each bin if the number of observations

in that bin exceeds 10,000. Then, we use a multivariate kernel regression estimator, as implemented in the kreg function in the gplm

package (https://cran.r-project.org/web/packages/gplm/index.html). This calculates a smoothed variance, at the midpoint of each

point of the 30 3 30 grid. We use this midpoint as the regularized variance (dVarðXijkÞ) for each polyA site falling within that bin.

Calculating polyA residuals for all cells

Given our backgroundmodel estimated fromNT control cells, we can now ask the following questions for any single cell i in our data-

set: given the observed read depth nij observed for this cell at gene j:

(1) Under the background model, what is the expected value of the counts at each polyA site

(2) Under the background model, what is the variance for these counts

(3) How do the observed values for this cell compare with the expected values?

The expected value for each site can be obtained from Equation 1 above. The variance under the background can be obtained by

identifying the correct bin for each polyA site (based on the two dimensions EðXijkÞ and nij, and obtaining the regularized variance

estimate for that bin. If the dimensions for the polyA site fall outside of the grid defined in the previous step (defined by the 99th

percentile in NT cells), we use Equation 2 to calculate the variance. We also set a minimum regularized variance of 0.1 for all polyA

sites.

To compare the observed counts from each cell to the expected values under the background model, we calculate a Pearson re-

sidual (polyA residual), br ijk , representing a standardized distance between the observed and expected counts.

br ijk =
Xijk � EðXijkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðXijkÞ
q

We calculated two sets of Pearson residuals: one based on tandem sites located in the 30 most exon, and one on all intronic sites

and tandem sites in the 30 most exon. This allowed for the identification of both tandem and intronic alternative polyadenylation

events, as detailed in model-based tests for differential polyA site usage.

By calculating residuals at the polyA site level (instead at the gene level), our procedure can flexibly handle diverse cases, for

example, when there are >2 polyA sites in a single 30 UTR, or when a gene exhibits differential polyadenylation at both intronic and

tandempolyA sites. However, we note that the polyA residuals atmultiple sites in the same gene are not independent (i.e., if one polyA

site exhibits high relative usage and receives a positive residual within a single cell, other polyA sites will likely decrease in relative use

and receive negative residuals). For this reason, when we perform downstream analyses such as clustering or principal components

analysis (which often assume independence across features) using polyA residuals, we only consider a single polyA site per gene.

Defining modules based on CSTF/CPSF responsiveness
Weaimed to first identify a set of sites that were responsive to NUDT21 perturbation (shortening) but could in principle result in length-

ening in response to other perturbations (Figure 4). We identified 1,583 polyA sites located in the last exon whose usage was

decreased in response to NUDT21 perturbation and increased in response to RBBP6 perturbation, using a threshold of q < 0.05

and a percent change compared to NT that was greater than 1%. These sites represent predominantly distal sites whose usage

decreased in CF-I perturbation and increased in RBBP6 perturbation.

Then,we identified aset of sites thatwereupregulated inbothCSTFandCPSFperturbations (using thecomplex-based linearmodel

described below), representing 323 genes. These genes composemodule A, where CPSF/CSTF perturbation acts in the opposite di-

rection of NUDT21 perturbation.We also identified 149 polyA sites composingmodule B, whose usage decreased in CSTF andCPSF

perturbation, indicating that NUDT21 perturbation and CPSF/CSTF perturbation induced 30 UTR shortening at these genes.
e5 Cell 187, 4408–4425.e1–e11, August 8, 2024

https://cran.r-project.org/web/packages/gplm/index.html


ll
Resource
APARENT-Perturb model and interpretation
Data processing

The data was aggregated to pseudo-bulk level by grouping cells by perturbation gene. The polyA sites of each gene were intersected

against the coordinates of annotated sites in PolyADB V3.7 Only sites within the 30 UTR were retained. Sites without a well-defined

core hexamer motif (at most two substitutions away from the canonical AAUAAA motif) were removed. Finally, genes with less than

two retained sites, or more than 10 sites, were thrown out. The resulting filtered data consisted of 5,267 genes. For each gene and

perturbation, we used the isoform read counts to estimate the relative usage (proportion) of each polyA site.

Architecture and training

The neural network follows a residual architecture with 6 layers of dilated convolutions (32 filters per layer, each filter is 3 positions

wide, the dilation rate is doubled per layer) and one initial convolutional layer with filter size 5 and no dilation before the residual layers,

taking as input 205 bp of sequence in a one-hot-encoded format centered on the 30 cleavage site and outputs residual logit scores for

the NT condition and the 10 chosen perturbations. The architecture differs slightly from the tissue-specific multi-PAS model pro-

posed in APARENT2.43 Specifically, the neural network does not only output one logit score per sequence and perturbation, but

instead it outputs three scores per perturbation: a proximal site score, a middle-site score and a distal site score. This allows the

model to learn different cis-regulatory rules of polyA site usage depending on site type. The model is replicated and shared

across all polyA sites of a given gene (for a maximum of 10 sites), such that the model predicts a tensor of perturbation response

logits S ˛R1031133 given an input tensor of polyA site sequences X ˛ f0;1g10320534. The response logits S are used in combination

with baseline APARENT2 logits A ˛R10 and the log distance between sites, D ˛R10, to predict the final proportion of usage for each

polyA site and perturbation, Y^ ˛ ½0;1�10311:

byi;j =
1fPAS i existsg 3 expðScoreði; jÞ ÞP10

t = 1 1fPAS t existsg 3expðScoreðt; jÞ Þ
Where:

Scorei;j =

" X
k˛ fp;m;dg

1fPAS i is type kg 3 w
ðscoreÞ
k 3 ðai + si;j;kÞ

#
+ wðdistanceÞ 3 di + w

ðbiasÞ
i;j

And:

i: Site # in 30 UTR
j: Perturbation #

k: Proximal, middle, or distal output

ai: APARENT2 score for site i

di: Cumulative log-distance (bp) from proximal-most site

si;j;k : Predicted score of perturbation j at site i for type k (trainable)

w: Regression weights (trainable)

Similar to the training procedure described in APARENT2, we first fit the regression weightswwhile keeping the perturbation-spe-

cific scores si; j;k frozen at zero. During this phase, we minimize the KL-divergence between measured proportions Y and predicted

proportions Y^. After convergence, we unfreeze the scores si; j;k and fit the weights of the underlying neural network using a

combination of a KL-divergence loss and a margin error between measured differences (YPerturb � YNT) and predicted differences

(Y^
Perturb � YNT). The model was trained with Keras using the Adam optimizer118 and training stopped once the loss started to in-

crease on held-out validation data.

In silico saturation mutagenesis and motif finding

Attribution scores were generated for the polyA sites of all 5,267 genes and for each perturbation using a windowed In-silico Satu-

ration Mutagenesis (ISM) approach.80,81 By sliding a 5 nt wide window over each sequence, we randomly and uniformly mutate all 5

bases within the window and record the mean difference in predicted logit scores with respect to the wild-type sequence for 8 in-

dependent samples. The resulting mean log-odds ratio is taken as the importance score for the base at the center of the window.

Whenever the importance scores for a particular perturbation are analyzed, we always subtract the importance scores of the NT con-

dition from the scores of the perturbation.

To cluster the importance scores and discover motifs, we ran TF-MoDISco82 on the scores of each perturbation with the following

settings: sliding window = 8, flank size = 5, max seqlets = 40,000, FDR = 0.1 and # mismatches = 1). TF-MoDISco was executed

separately on the negative- and positive part of the importance scores.

Motif insertion analysis and pairwise ablations

Dualmotif insertion simulationswere performed on a set of 64wild-type polyA site sequences as backgrounds. These sites were cho-

sen from all polyA sites that do not already contain instances of the motif of interest. The sites were uniformly sampled from this set

unless otherwise specified (e.g., in some analyses we biased the selection to GC- or AT-rich contexts). For each wild-type sequence,

wepredicted the residual score r(WT) = sPerturb� sNT for the perturbation of interest.We then insertedmotif A,motif B ormotif A andBat

every possible combination of positions (i and j) and generated the corresponding predictions r(A)i, j, r
(B)

i, j, r
(A and B)

i, j. Given these
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quantities, we estimated the odds ratio of epistasis at positions i and j as: epi = exp((r(A and B)
i, j� r(WT))� ((r(A)i, j� r(WT)) + (r(B)i, j� r(WT)))).

Finally, by grouping pairs of positions by their distance (|i� j|), we estimated the 10th, 50th and 90th percentile of odds ratios for each

distance.

Pairwise motif ablations were estimated using an identical formula, except now motifs are ablated (mutated) from wild-type se-

quences where they already exist. Motifs were ablated by replacing the seqlet identified by MoDISco with uniformly random bases

for 32 independent samples, unless the motif occurred over highly conserved positions (e.g., the core hexamer), in which case the

motif was randomly exchanged for specific hand-crafted subsequences (e.g., weaker version of the hexamer motif).

Massively parallel reporter assay experiment
MPRA library cloning

We based our MPRA library design on the APA Reference Library (Addgene #193784), which was used to validate the APARENT2

model.43 The construct enables the profiling of thousands of polyA site sequences, which are inserted into the proximal site, but

also enables the user to choose (via insertion) the sequence context at the distal site. We chose to test our MPRA library using

five different distal site contexts, with varying strengths, and included a distal site barcode which enabled us to know which context

was relevant for each MPRA sequence read.

To do this, we first separately cloned five distal sequences (bGH, CCT6A, TMEM237, TMEM106C, or CDK1; Table S5) into the

distal site of the construct. We ordered the five sites as gBlocks from IDT with the following structure: PCR-handle(containing

Bsp1407I cut site)Nextera-Read2distal-site-barcodeEsp3I-cut-sitefiller-sequencevariable-proximal-siteSalI-cut-sitePCR-handle

(Table S5). gBlocks were amplified with forward (50-GGCATGGACGAGCTGTAC-30) and reverse (50-CCGAAAAGTGCCACCTGAC-

30) primers and Q5 polymerase (NEB M0492S) using the following PCR program: 98�C for 30 s; 25 cycles of 98�C for 10 s, 60�C
for 20 s and 72�C for 20 s; followed by 72�C for 3 min. The amplified gBlocks were ligated into the Bsp14071 and SalI-digested

APA Reference Library vector using a Gibson Assembly reaction (NEB E2611S), following manufacturer recommendations.

We designed 3,802 proximal sequences for testing, but also included barcode replicates for a subset of sequences, leading to a

total of 6,113 sequences (seeMPRA Construct Design below; Table S5). We ordered an oligonucleotide pool from Twist Biosciences

containing these sequences, flanked by Esp3I restriction enzyme cut sites. We cloned this pool into each of the five distal site con-

structs. 20 ng of the oligonucleotide pool was amplified with forward (50-TAGAAGGTCTATGTTCGCCA-30) and reverse (50-TAAC
GAGTCCTAAACGGGAT-30) primers and KAPA HiFi HotStart ReadyMix (Kapa Biosystems 07958935001) using the following PCR

program: 98�C for 30 s; 9 cycles of 98�C for 10 s, 60�C for 15 s and 72�C for 15 s; followed by 72�C for 3 min. The amplified oligo-

nucleotide pool was 1.4X SPRI purified, followed by Esp3I (Thermo Fisher FD0454) digestion and an additional 2X SPRI purification.

Each of the five distal site plasmids were all digested with Esp3I (Thermo Fisher FD0454) and then dephosphorylated by incubation

with FASTAP (Thermo Fisher EF0654). The digested proximal site reporter insert was split into five equal amounts and ligated into

each of the digested distal site plasmids using T7 DNA ligase (NEB M0318S). After cloning, the five distal site plasmid pools were

combined at equal amounts to generate a final MPRA library.

Library transfection into

CRISPRi-expressing HEK293FT cells were transduced with lentivirus for CSTF3, NUDT21, NT (two guides and 2 replicates each for a

total of twelve samples) and 8 mg/mL polybrene (EMDMillipore TR-1003-G). After three days of selection for guide positive cells with

1 mg/mL puromycin (Thermo Fisher A1113803), 1,000,000 cells were seeded per well in a 6-well plate 16–24 h prior to transfection.

The MPRA library was transfected into cells using Lipofectamine 3000 (Thermo Fisher L3000008) using 2.5 mg plasmid library

per well.

RNA extraction

48 h post-transfection (7 days after original transductionwith sgRNAs), RNAwas extracted using the ZymoDirectZol RNA purification

kit with DNase I treatment following the manufacturer’s protocol (Zymo R2052). mRNA was isolated from 5 mg total RNA per sample

using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB E7490S).

MPRA library preparation and sequencing

The resulting mRNAs were reverse transcribed with SuperScript IV Reverse Transcriptase (Thermo Fisher 18090200) to generate

cDNA following manufacturer instructions. The anchored poly dT primer for reverse transcription contained a Truseq Read 1 handle,

an 8 bp sample barcode, and a unique molecule identifier (UMI) (TruseqR1-barcode-UMI-T18VN, see Table S5 for primer se-

quences). After reverse transcription, RNA hydrolysis was performed using RNase H (Thermo Fisher 18021071) and then samples

were purified using a DNAClean &Concentrator-5 kit (Zymo D4013). Purified cDNAwas amplified with KAPAHiFi HotStart ReadyMix

(Kapa Biosystems 07958935001) using a forward primer containing additional Illumina adaptor sequences (P5-TruseqR1; Table S5)

and reverse primer containing a sample-specific barcode (P7-index-NexteraR2; Table S5). Amplification was monitored with qPCR

so that the reaction could be stopped early to minimize PCR bias with the following cycling conditions: 98�C for 3 min; 15 cycles of

98�C for 20 s, 60�C for 20 s and 72�C for 1 min; followed by 72�C for 5 min. After amplification, samples were 1X SPRI purified. The

MPRA library was sequenced using an Illumina NextSeqMid-Output (300 cycle) kit: allocating 16 cycles to Read 1, and 200 cycles to

Read 2.

Massively parallel reporter assay: Construct design and computational analysis
We designed sequences to validate APARENT-Perturb predictions as follows.
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Modifying CSTF perturbation response

We selected 110 CSTF3-responsive sequences, and 110 nonresponsive sequences. For both sets, we divided sequences between

those natively located at proximal or distal polyA sites. The perturbation-responsive sequences were selected in two steps: First, we

picked the top 4%most responsive sequences based on the APARENT-Perturb CSTF3model predictions, after which we sorted the

resulting subset in descending order of measured perturbation response and chose the top sequences. The nonresponsive set was

chosen as sequences exhibiting minimal predicted responsiveness in the APARENT-Perturb CSTF3 model.

We next created sequence alterations in order to modulate responsiveness to CSTF3 perturbation. To reduce responsivity, we

used the APARENT-Perturb CSTF3 model to identify the 9 bp window with the strongest mode of ISM score at each locus. We

then replaced this window with random sequence (probability = A = C = G = T = 25%), which we refer to as a ‘‘shuffle’’. Each shuffle

was repeated 5 times with new random sequences. To design sequences with increased CSTF3 responsivity, we initialized each

starting sequence with one of the CSTF3-responsive wild-type sites and used MCMC sampling to ‘‘improve’’ them with at most

10 or 20 mutations. We restricted the design procedure from altering the core hexamer. We further restricted the procedure from

creating overly A-rich repeat regions (no 7-mer with 6 or more A’s), which are problematic to quantify experimentally due to internal

priming.

We also classified WT sequences based on whether they contained a canonical or non-canonical CSTF binding site. We defined

polyA sites as canonical if the 9bp region with strongest mode of ISM score for the CSTF3 model contained AT-rich (NTTTT/TNTTT/

TTNTT/TTTNT/TTTTN) or GT-rich (GTTGT/TGTGT/GTGTT) downstream sequence element.89Wild-type sequences where the region

chosen for shuffling did not contain one of these elements were considered non-canonical.

Altering module/B gene proximal site bias

To test our hypothesis that differential strengths of CSTF proximal site binding drives differences in the proximal bias of module A/B

genes, we started with the proximal sites of 49module A genes and 47module B genes. For module A genes, we shuffled the GT-rich

downstream region with the highest ISM score (as before, we replaced a 9bp windowwith random nucleotide content). For module B

genes, we inserted a GT-rich motif (chosen randomly from TGTGTGTGT, TGTGTGTCT, TGTGTCTGT, TGTCTGTGT, TCTGTGTGT,

TGTGTTTTT, TTGTGTTTT, TTTGTGTTT, TTTTGTGTT, TTTTTGTGT, TGTCTTTTT, TTGTCTTTT, TTTGTCTTT, TTTTGTCTT, or

TTTTTGTCT). The insertion was placed in the downstream region (after the core hexamer and at most 70bp downstream), and

we used the APARENT-Perturb CSTF3 model to identify the position where the motif insertion was predicted to elicit a maximal

response.

Testing for epistasis between pairs of motifs

To test for epistasis between NUDT21 motifs, we started with 19 neutral sequences that did not contain any TGTA motifs. We per-

formed single and dual insertions of TGTA with AT-rich flanks (TTTGTAAT) and GC-rich flanks (GGTGTAGC). We performed this

insertion at 4 different distances between motifs (0bp, 5 bp, 20 bp, and 40 bp).

To test for epistasis between the core hexamer and downstreamGT-rich elements, we started with 50 sequences that contained a

weak core hexamer sequence (one of ATTAAA, AGTAAA, ACTAAA, TATAAA, GATAAA, or CATAAA) and no downstream GT-rich

motif (no occurrence of GTG, TGT, GTCT, TGTC, TGTTGT, GTTT, TTTT, TTAT, GTTT, or TTTG). We replaced the weak hexamer

with a strong hexamer (AATAATAAATAA). In addition, we inserted a GT-rich motif (TTGTGTGTT) downstream of the core hexamer

at various distance offsets (0, 5, 10, 20, 40). We performed these modifications individually and simultaneously to test for potential

epistasis.

Quantifying polyA site usage from MPRA sequencing

Wedemultiplexed theMPRA data using the barcode sequences that were synthesized into the oligonucleotide pools and cloned into

the MPRA construct. The barcodes in Read 1 identified the experimental condition (i.e., replicate and sgRNA identity), as well as a

uniquemolecular identifier. The barcodes in Read 2 identify the proximal and distal site contexts that gave rise to themRNAmolecule

being sequenced. The distal site barcodeswere assigned using the first 4–8 bp of read 2 (see Table S5). The next 20 bp after the distal

site barcode were used to assign reads to a proximal site (one of our 6,113 polyA site constructs, each with a unique 20 bp barcode).

Only reads that matched distal and proximal barcodes within 1 bp each were retained. We collapsed all reads with the same UMI,

proximal, and distal site barcodes (allowing 1 bp mutations in the UMI sequence).

In our MPRA sequencing data, if anmRNAmolecule is cleaved at the proximal site, we will observe a stretch of A nucleotides at the

cleavage site in the sequence read. If the mRNAmolecule is distally cleaved, the full read will consist of the 30 UTR sequence (we will

not observe a polyA stretch). Therefore, for each read, we classified it as ‘‘proximal’’ if it contained a polyA stretch (18 A’s with up to

2 bp mismatches). Reads that did not contain a polyA stretch were classified as distal. We only retained reads where the last 20bp

prior to the cleavage site or end of readwere consistent (within a Levenshtein distance of 3) with the expected genomic sequence.We

then obtained a counts matrix of proximal vs. distal reads for each sample and distal site. We pooled counts from samples profiled

with independent guides across the same target gene, as we observed high reproducibility across independent guides (Figure S6C).

We also summed counts across barcode replicates and independent shuffles of the same locus.

In total, our MPRA profiled mRNAmolecules originating from 30,565 (6,113 proximal site3 5 distal sites) contexts. We obtained a

median of 267 UMI for eachmRNAmolecule in an experimental condition, enabling us to accurately quantify proximal vs. distal polyA

site usage. As quality control, we removed rare sequences where we obtained less than 100 total UMI (summing across repeat shuf-

fles and guide replicates), or where we observed exclusively proximal or distal reads. For sequences that passed QC, we calculated

the log odds of proximal site usage: log2(Proximal reads/Distal reads). We averaged this value across the two biological replicates. To
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compare the measured log odds with APARENT-Perturb predictions in both NT and CSTF3 perturbed cells (Figure 6B), we used

APARENT2 estimates for NT samples and summed these estimates with predicted log-odds ratio for CSTF3 from APARENT-

Perturb to obtain estimates of proximal site usage in CSTF3 perturbed cells.

In order to visualize howmodifications of native polyA sites effects their usage (Figures 6E–6H and 6K), we took all assigned/filtered

reads (as described above), and plotted how frequently we observed a polyA stretch at each position in the construct (0–164 bp).

Spikes in the visualization track indicate the location of proximal cleavage sites, and the height of the track corresponds to the per-

centage of mRNA molecules that are proximally cleaved. Each plot shows all filtered reads in the context of one distal site (bGH for

Figure 6E, CCT6A for Figure 6H, and CDK1 for Figure 6K).

Analysis of genome-scale Perturb-seq dataset
We processed the scRNA-seq gene expression raw data from the Genome-scale Perturb-seq dataset47 (K562 KD8) using

CellRanger (v6.0.0, ‘‘cellranger count’’; hg38, ensembl v97). Guide RNA and target gene assignments were extracted from the meta-

data of the original analysis (https://gwps.wi.mit.edu). We quantified polyA site counts as described previously (quantifying polyA site

usage), using the same polyA site GFF file as in the HEK293FT dataset. From this dataset, we extracted cells with sgRNAs targeting

1,280 previously annotated RNA binding proteins,90 alongwith NT controls.We kept all polyAsites located within 50bp of a previously

annotated site in either the polyAdbv37 database. After intersection, we retained sites whose annotated location was either within an

intron or the last exon.

We performed differential polyadenylation for each perturbation as previously described for our CPA-Perturb-seq dataset (model-

based tests for differential polyA site usage). After linear modeling, we defined differential APA events based on an FDR-threshold of

0.05. To compare these results with K562 cells profiled with CPA-Perturb-seq (Figure 7A), we calculated the fraction of tandem

events that were associated with 30 UTR shortening in each dataset (for overlapping tandem regulators with at least 25 cells in

the GPWS dataset). For all perturbations with more than 100 APA events, we calculate a correlation matrix using the same procedure

used in Figures 4A and 4B. In order to focus on perturbations that cluster together, we retain regulators that exhibit a correlation of

>0.25 with at least one other perturbation and visualize this correlationmatrix in Figure 7C.We defined regulator ‘‘modules’’ based on

correlated perturbation responses in Figure 7C.

To investigate if intronic signatures defined from the CPA-Perturb-seq data replicated for any of GWPS perturbation modules, we

repeated differential polyadenylation analysis using themoduleswe defined in Figure 7C. Then, we used a hypergeometric test to test

if the list of intronic polyA sites identified fromGWPS significantly overlapped with the list of signature sites fromCPA-Perturb-seq. In

Figure 7G, the size of dots indicates the p value from the hypergeometric test. The color of each dot indicates the average polyA re-

sidual across the intronic polyA sites for each signature, across all cells in eachGWPSmodule. In Figure 7H,we assess the strength of

50 splice site (donor) sequences for intronic polyA sites. To do this, we used the calculateMaxEntScanScore in the VarCon R pack-

age.119 This package calculates splice site scores using 9 bp of the sequence near the 50 donor site, which we extracted using the

GenomicRanges Bioconductor package.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model-based tests for differential polyA site usage
In order to identify polyA sites whose relative usage changes after each perturbation, we performed differential analysis on the polyA

residuals using a linear model. For each site k and each perturbation, we ran a linear model comparing the perturbed cells to NT cells

with main effects for each of l guides that target the same gene.br ijk = b0 + b1Zi1 +.+ b1Zil,

Zil = 1 if cell i received guide l, 0 otherwise

Zi1 = . = Zil = 0, when cell i received NT guide

For each site, we only include cells with non-zero values for the residuals in the linear model, representing cells in which at least one

read aligned to polyA sites in the same gene was captured. We then prepare a contrast in order to compare all of the guides targeting

the same gene to NT cells, aswell as comparisons between guides. For instance, if there are 3 guides that target a particular gene, the

contrast matrix will be as follows: 0BBBBBBBBBB@

� 1 0 0

1

3
1 0

1

3
� 1 1

1

3
0 � 1

1CCCCCCCCCCA
The first column compares NT cells to the average across each guide. The second column compares the first and second guides,

and the third column compares the second and third guides. By weighting each guide equally we will downweight observations
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where the perturbation strength is not observable acrossmultiple independent sgRNA. In order to test the specified contrasts matrix,

we use it as input to the contrasts argument to the lm function in R. The corresponding estimate (‘‘perturbation effect estimate’’) and

p value for the contrast comparing NT cells to all guides is then used to assess if a particular site responds to a perturbation.

Linear modeling was performed separately on both the tandem sites and intronic polyA residuals. After running this linear model on

all polyA sites, the q-value package (https://github.com/StoreyLab/qvalue) was used to estimate q-values with a false-discovery rate

(FDR) of 5%. Genes having at least one tandem site with a q-value less than 0.05 and greater than 5% change in average usage

compared to NT cells were classified as tandem alternative polyadenylation events. Similarly, genes with at least one intronic site

with a q-value less than 0.05 and at least 5% change compared to NT cells were classified as intronic differential polyadenylation

events. For Figure 3A (left), a gene could have both intronic and tandem differential polyadenylation events.

We also utilize the results of the linear model to perform clustering on the alternative polyadenylation perturbation responses

across regulators. For regulators that exhibit primarily tandemAPA, we first select all genes that show evidence of tandem alternative

polyadenylation in any perturbation, and extract the top tandem polyA site (based on the magnitude of the polyA residual) for each

gene. For each regulator, we define a vector of perturbation effect estimates (obtained from our linear model contrasts) for each of

these polyA sites. These vectors were used as input to hierarchical clustering in Figures 4A and 4B. We also perform a similar pro-

cedure for regulators that exhibit primarily intronic APA (Figure S4E), using perturbation effect estimators from the top intronic polyA

site for each gene as input to correlation and hierarchical clustering.

In order to intersect changes in polyA site usage with potential changes in gene abundance, we also estimated total RNA levels for

each gene with multiple polyA sites. We summed counts across all annotated polyA sites for that gene for each cell, regardless of

position within the transcript, and performed standard log-normalization in Seurat. We then performed differential expression to

compare gene expression of each perturbation to NT cells, using the Wilcoxon rank-sum test (Figures 2F–2H). Significance was

determined using a false discovery threshold of 0.05, as above. Genes were defined as differentially expressed for a perturbation

if the log2FC exceeded 0.25 and the q-value was less than 0.05.

To identify a robust set of peaks that respond similarly across members of the same complex (Figure 4C), we ran an additional

model testing for the difference between NT cells and guides targeting the same complex (CPSF1-4 and FIP1L1 for CPSF and

CSTF1/3 for CSTF).

Linking intronic polyA sites with RNA life cycle
We focused on 8 regulators whose perturbation primarily resulted in increased usage of intronic polyA sites: CDC73, PAF1, CTR9,

SCAF8, SCAF4, PABPN1, CPSF3L, and RPAP2. For each perturbation, we identified significant intronic sites that had an increase in

average usage >5% compared to NT cells as well as q-value <0.05, as described above. We performed hierarchical clustering of

intronic regulators using the same procedure as we define above for tandem regulators, leading us to define two correlated groups

of regulators: PAF complexmembers (PAF1/CTR9/CDC73) aswell as CPSF3L/RPAP2.We defined a signature of responsive sites for

these two groups (using the intersection of significant sites from each group member), and for the remaining individual regulators

(PABN1, SCAF4, SCAF8). For Figure 3D, we plot the top 50 unique sites for each regulator or set of regulators.To understand factors

that drive intronic polyA site usage for each regulator, we first calculated a set of features for each intronic site.We identified the intron

where each polyA site fell, using the knownCanonical table obtained from theUCSCgenome browser (hg38).We calculated thewidth

of that intron, its GC content, the total width of the transcript (subtracting the contribution of that intron), the distance to the next polyA

site in the gene, and whether or not it was the first intron. We log2-transformed all widths and distances and used these features as

covariates in a linear model. For each regulator, we aimed to predict the perturbation response for each intronic site (represented by

its differential polyA site usage coefficient, as defined above), based on these covariates. For Figure 3E, we show the learned t sta-

tistic for the covariates in each regulator model.

We further characterized the relationship between distance to the next polyA site and perturbation response at each intronic polyA

site. We binned polyA sites into deciles based on the next annotated polyA site in the gene and then calculated the Pearson corre-

lation between distance (log2-distance) and the percent change of the intronic polyA site in PAF1-perturbed cells compared to NT

(Figure S4F). We also repeated this analysis for CPSF3L-perturbed cells. To assess if this relationship for PAF1 was unique to sites

located in the first intron, we also performed this analysis separately for polyA sites located within first introns, and all other introns

(Figure S4G). We also repeated this analysis binning polyA sites into deciles based on GC content and intron width (Figures S4H

and S4I).

In Figure 3I, we used previously published data that calculated intron excision speeds for introns in 4,163 genes, 2,212 of which we

profiled in our dataset.62 We downloaded summary data for these introns from the primary manuscript, and after lifting over coordi-

nates from hg19 to hg38, we identified 519 introns that overlapped with the cleavage site of an intronic polyA site with increased us-

age in one or more perturbations. We calculated the fraction of these polyA sites with slow, medium, or fast intron excision speeds

(‘‘thetaClust’’ in the original dataset).

Polynomial feature regression
Polynomial feature regression was used to validate the epistatic relationships discovered by the neural network directly in the

data (Figures S5H–S5K). To validate the epistasis of a given pair of motifs A and B, we constructed independent count features

of the occurrence counts of motif A and motif B respectively, as well as binary indicator features of higher-order combinatorial
Cell 187, 4408–4425.e1–e11, August 8, 2024 e10

https://github.com/StoreyLab/qvalue


ll
Resource
co-occurrences (e.g., bothmotif A and B occur n times in site i). These features were constructed for each polyA site in each gene. To

reduce the number of free parameters, the features for all non-distal sites in the same genewere aggregated. Given this featurematrix

as input, we performed standard linear regression in scikit-learn120 to regress the log of the odds ratio of distal polyA site usage in the

perturbation of interest relative to the NT condition. To interpret the learned epistatic rules, we inspect the signs and magnitudes of

both the individual count feature weights and the combinatorial binary indicator weights. For example, to assess the homotypic rela-

tionship between instances of motif A, we perform regression using a count feature of motif A and a binary indicator which is set to

1 only if two or more instances of motif A are present in the sequence. After regression, if the learned weight for the binary indicator is

negative it suggests a sub-additive relationship (the regression subtracts from the additive count feature). Conversely, a positive in-

dicator weight suggests a super-additive relationship (the regression adds to the additive count features).

Validating sequence effect on polyA site usage
In order to compare proximal site usage between two conditions (or sequences) in our MPRA library, we calculated the log-odds

ratio: the ratio of the two log-odds values. In Figure 6C, we performed a two-sample Wilcoxon test comparing the log-odds ratios

(log-odds CSTF3/log-odds NT) of predicted CSTF3-responsive sequences to nonresponsive sequences. To test whether sequence

alterations affect perturbation responsivity (Figures 6F and 6G) we calculated theD log-odds ratio (i.e., the difference in log-odds ratio

between theWT sequence and the corresponding altered sequence), and then performed a one-sample t-test to test if this value was

significantly different from 0. Finally, to test for epistasis (Figure 6N), we first calculated the log-odds ratio comparing proximal

site usage of the altered sequence to the WT sequence, for each individual/dual insertion. We calculated the epistasis odds ratio: =

2^(LOR(dual insertion) � [LOR(single insertion 1) + LOR(single insertion 2)]). We then calculated the difference in epistasis odds ratio

between NT and NUDT21-perturbed cells and performed a one-sample t-test to test if this value was significantly different from 0.

The boxplots in Figures 6 and S6 depict themedian (horizontal line) and first and third quartiles (lower and upper hinges, respectively).

The upper and lower whiskers extend to 1.5 times the interquartile range fromeach hinge, and outlier points falling beyond the ends of

the whiskers were removed for visual clarity.
e11 Cell 187, 4408–4425.e1–e11, August 8, 2024



Supplemental figures

Figure S1. Profiling polyA site usage with 30 scRNA-seq, related to Figure 1

(A) Histogram showing the number of identified polyA sites (after intersection with polyA_DB v3.2) per gene in the CPA-Perturb-seq dataset.

(B) Positional preference of the canonical cleavage motives AATAAA and ATTAAA relative to the detected polyA sites in terminal exons and introns.

(C) Schematic of gene-specific amplification of 30 cDNA ends (30 RACE), used to identify cleavage sites at single-base-pair resolution.

(legend continued on next page)
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(D) Visualization of frequency of reads (y axis) containing a polyA sequence (evidence of proximal cleavage) obtained from 30 RACEwith Illumina sequencing. Blue

bar shows the predicted transcript, and red arrow indicates the inferred polyA site from CPA-Perturb-seq.

(E and F) Read coverage plot fromCPA-Perturb-seq from the JKAMP (left) and CIAPIN1 (right) loci. Each track represents a pseudobulk average of cells, grouped

by target gene perturbation. JKAMP exhibits a strong increase in proximal site usage upon NUDT21 perturbation, and CIAPIN1 does not exhibit changes in polyA

site usage upon NUDT21 perturbation.

(G) Change in proximal site usage comparing NT to NUDT21 knockdown in CPA-Perturb-seq (x axis) to 30 RACE (y axis) for 7 genes. Points are colored by

NUDT21 perturbation strength, as measured in CPA-Perturb-seq.

(H) Scatterplots showing reproducibility across replicates when profiling polyA site usage in HEK293FT cells at baseline using different technologies. Each point

represents percentage isoform usage in replicate 1 (x axis) vs. replicate 2 (y axis). Points are shaded according to kernel density estimation (clipped at 2.5), and

the Pearson correlation between replicates is calculated.

(I) Pearson correlation matrix showing quantitative transcriptome-wide agreement across three different technologies used to profile polyA site usage.
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Figure S2. Perturbation responses in the CPA-Perturb-seq dataset, related to Figure 1

(A) Log-fold change of the target gene observed in the Perturb-seq data (left) vs. the number of differentially expressed genes for that perturbation (right). In cases

where either no or few differentially expressed (DE) genes were detected, Mixscape will classify all cells as ‘‘non-perturbed.’’ This can occur in cases where the

target perturbation was unsuccessful (i.e., CLP1) but also in cases where the target gene was downregulated but no global effect was observed (i.e., PABC4).

(legend continued on next page)
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(B) Read coverage plot at the CBX3 locus. Each track represents a pseudobulk average of cells, grouped by their perturbation and separated by their individual

sgRNA.

(C) Hierarchical clustering of the polyA site/regulator count matrix. Each column represents pseudobulk average of single cells that received the same target gene

perturbation, after subtracting the pseudobulk average of NT control cells.

(D) Distribution of fraction of distal polyA site usage within single cells for CBX3 locus, split by total number of reads for CBX3 within each cell, for both NT cells

(top) and cells with NUDT21 perturbation (bottom). Cells with low coverage at this locus (1–5 reads, left) show a primarily bimodal distribution between proximal

and distal site usage, but cells with sufficient sequencing depth (middle, right) show that polyA site usage is heterogeneous even with individual cells.

(E) Read coverage at the CBX3 locus for 3 NT cells (gray) and 3 NUDT21-perturbed cells (green), illustrating heterogeneity in polyA site usage within individual

cells.
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Figure S3. Representative read coverage plots in CPA-Perturb-Seq dataset, related to Figure 1

(A–G) Read coverage plots depicting the differential use of alternative polyA sites at representative loci. Each track represents a pseudobulk average of cells,

grouped by their target gene perturbation. Loci were selected based on read coverage plots shown in Figures 1, 2, 3, 4, and 5 and show data for 36 regulators and

NT control cells. At the ATP6V1G1 locus (A), we primarily observed changes in total gene abundance, rather than relative polyA site usage, across regulators.
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Figure S4. Perturbation-driven changes in tandem and intronic polyadenylation, related to Figures 3 and 4
(A) UMAP visualization of HEK293FT (left) and K562 (right) cells profiled via CPA-Perturb-seq. Cells are colored by target gene identity (colors for each gene are

the same as those used in Figure 1C). Visualization was computed based on a linear discriminant analysis (LDA) of polyA residuals of tandem and intronic polyA

sites.

(B) Same as Figure 3A but from the K562 dataset.

(C) Boxplot indicating the observed log2 fold change in gene expression after NUDT21 perturbation (HEK293FT cells). Genes are partitioned into deciles based on

the degree of 30 UTR changes observed after NUDT21 perturbation.

(D) Number of genes with changes in intronic polyA site usage, classified by increased or decreased usage of intronic sites for both HEK293FT (left) and K562

(right) cells. Regulators PAF1, CTR9, CDC73, SCAF8, SCAF4, CPSF3L, RABP2, and PABPN1 primarily demonstrate increased usage of intronic polyA sites.

(E) Pearson correlation matrix depicting the relationships between intronic polyadenylation regulators in HEK293FT cells. Correlations are calculated using the

linear model coefficients learned during differential polyadenylation analysis (STAR Methods). Genes are ordered via hierarchical clustering.

(F) Percent change (y axis) in polyA site usage of PAF1-perturbed (left) andCPSF3L-perturbed (right) cells compared toNT control cells for intronic polyA sites as a

function of distance to the next polyA site (binned into x axis deciles). The distance to the next polyA site correlates with the response of an intronic site to PAF1,

but not CPSF3L, perturbation. Pearson correlation is computed between the distance (log-scale) and percent change.

(G) Same as (F) but shown for sites in the first intron (left) and not in the first intron (right) for PAF1 perturbation.

(H) Same as (F) but binning intronic polyA sites into deciles based on GC content.

(I) Same as (F) but binning intronic polyA sites into deciles based on intron width.

(J) Heatmap showing K562 polyA residuals for distal sites in module A genes and module B genes. Identity and order of polyA sites shown in the heatmap are the

same as in Figure 4C.

(K) Same as Figure 4F, showing module A and B distal site usage in K562 cells.

ll
Resource



(legend on next page)

ll
Resource



Figure S5. Evaluation and interpretation of APARENT-Perturb, related to Figure 5

(A) (Left) Predicted vs. measured distal polyA site usage in three perturbation conditions (NUDT21, CSTF3, and RBBP6). (Right) Predicted vs.measured difference

in proximal or distal polyA site usage with respect to the non-targeting (NT) condition. Only predictions from the held-out sets of the cross-validation procedure

are included.

(B) Same as in Figure 5C but for additional loci.

(C) Average residual attribution scores for all 10 learned perturbations, separated by proximal and distal polyA sites. The corresponding top 5MoDIScomotifs are

shown below each plot for proximal and distal sites. These motifs are all associated with positive contribution scores (i.e., they increase perturbation magnitude),

except for distal motifs in RBBP6 and proximal motifs in THOC5; these motifs are associated with negative contribution scores (they decrease perturbation

magnitude).

(D) Average attribution scores of specific classes of MoDISco motif hits, grouped by perturbation. Red, the motif class is associated with an increase in

perturbation magnitude. Blue, the motif class is associated with a decrease in perturbation magnitude.

(E) (Left) Co-occurrence of sequence features with high attribution scores in both the NUDT21 and CSTF1/3 perturbations. Average attribution scores in the

NUDT21 perturbation for distal pA signals (red) and average difference in attribution scores between the NUDT21 perturbation and CSTF1 (orange) or CSTF3

(purple). (Right) Co-occurrence analysis of MoDISco motif hits matching U/G-rich motifs in the NUDT21 and CSTF3 perturbations (odds ratios and p values

calculated with Fisher’s exact test).

(F) Same as Figure 5D but showing all distal polyA sites that respond to NUDT21 perturbation. PolyA sites are split into deciles based on the model-assigned

importance scores for the downstream element region (DSE; denoted by vertical lines). For decile 1 sites, the DSE is associated with positive attribution scores for

NUDT21, while decile 10 sites have negative contribution scores.

(G) Average polyA residuals (scaled by perturbation) for regulators in the CPA-Perturb-seq dataset for polyA sites in decile 1 vs. decile 10. These deciles were

defined by the NUDT21 perturbationmodel but also respond differently to CSTF perturbation. * indicates p value <0.05 in t test comparing residuals in decile 1 vs.

decile 10; ** indicates p value <0.001.

(H) Combinatorial ablation of UGUA motifs in distal polyA signals with exactly two wild-type UGUA motifs in the upstream region, which indicates an overall sub-

additive interaction. Epistasis odds ratio (y axis) estimated by exponentiating the difference in predicted perturbation log odds in the NUDT21 condition when

replacing both motifs with random sequence and the sum of log odds when replacing one motif with random sequence at a time.

(I) Motif insertion simulation for dual UGUA motifs with varying flanking nucleotide context. The y axis corresponds to the exponentiated difference between the

predicted perturbation log odds in the NUDT21 condition when inserting both motifs and when inserting each motif one at a time.

(J) Combinatorial ablation of canonical core hexamer motifs and downstream U/G-rich motifs. The U/G-rich motif is replaced with random sequence, while the

core hexamer is replaced with a randomly chosen single-nucleotide mutated hexamer.

(K) Linear regression coefficients of count features and combinatorial indicator variables when fitting the regressionmodel on distal perturbation log-odds ratios in

the NUDT21 condition with respect to NT. Distributions of coefficients were generated from 1,000-fold bootstrapping.

(L) Regression coefficient analysis when fitting on RBBP6 perturbation log-odds ratios.
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Figure S6. Profiling thousands of APARENT-Perturb predictions in multiple genetic contexts, related to Figure 6
(A) Schematic illustrating example constructs of both a WT and shuffled sequence that are inserted into the MPRA construct as well as representative reads for

mRNA molecules originating from each sequence. The first 20 bp of the construct consist of a unique barcode (red) that ensures identifiability of each proximal

site construct. Each construct is also anchored on a core hexamer (green). In the example shown, we identified a 9-bp downstream element that predicts CSTF3

perturbation response (orange) and replaced that element with random sequence (purple). By directly reading out proximal site usage (when we sequence the

polyA tail, highlighted in blue), we measure how sequence modifications change polyA site usage.

(B) Density plot showing fraction distal site usage for all 3,802 tested sequences, grouped into the 5 distal site contexts.

(C) Scatterplot indicating reproducibility of polyA site usage measurements (fraction proximal site usage) across biological replicates for NT (left) and CSTF3

(middle), colored by kernel density estimates. We also observed high reproducibility for independent guides targeting CSTF3 (right).

(D) Same as Figure 6F but separated by distal site context.

(E) Same as Figure 6F but for CSTF3-nonresponsive sequences, as predicted by APARENT-Perturb.

(F) Attribution scores from the APARENT-Perturb NUDT21 model at the distal site of the FAM13C gene (chr10:59246514), both for the wild-type (WT) sequence

(top) and upon shuffling the predicted CSTF3 sequence element highlighted in green (bottom). Upstream NUDT21 binding sites (TGTA) are shown in orange.

(G) Same as Figure 6G but split by distal site.

(H) Histogram of the distance (downstream of the core hexamer) for 9-bp regions that were predicted by APARENT-Perturb to havemaximal attribution scores for

the CSTF3 model (left). Most frequent 4-mers in the WT sequences of these regions include T- and GT-rich elements but not NUDT21 binding sites TGTA (right).

(I) Shuffling the predicted CSTF responsive element in module A genes (n = 49, left) or inserting a GT-rich region in module B genes (n = 47, right) has opposite

effects on proximal site usage (log-odds ratio comparing modified sequence to WT, y axis), which is consistent across 5 distal sites.

(J) (Left) CSTF3 perturbation response (log-odds ratio, y axis) for proximal site usage of WT module A genes and upon performing sequence shuffles. (Right)

Perturbation response for WT module B sites and upon performing sequence insertions. ** indicates p value <0.0001.

(K) Effect of insertion of TGTAmotif with AT-rich (left) or GC-rich (right) flanks on proximal site usage (log-odds ratio of insertion compared toWT sequence, y axis).

** indicates p value <0.0001; * indicates p value = 0.0001–0.05.
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Figure S7. Identifying regulators of alternative polyadenylation from genome-wide Perturb-seq, related to Figure 7

(A) Same as Figure 7C. Axes show all gene names in the correlation matrix.

(B) Number of genes with significant changes in tandem polyA site usage in GWPS dataset, classified by 30 UTR shortening or 30 UTR lengthening.

(C) Number of genes with significant changes in intronic polyA site usage in GWPS dataset, classified by increased or decreased intronic polyA site usage.

(D–I) Coverage plots depicting the differential sequencing read coverage and use of alternative polyA sites for representative genes in each module.
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